Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Jänner 2003

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen,

vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 18. Februar 2003

Für die Abteilung Waldschutz - Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

?	Tonbanddienst der Post:	0512/1552
?	Teletext des ORF	Seite 782, 783
?	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Erlauterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	
Imst – Imsterau	12
Karwendel West	15
Innsbruck – Andechsstrasse (Reichenau)	17
Innsbruck – Fallmerayerstrasse (Zentrum)	21
Innsbruck – Sadrach	
Nordkette	27
Gärberbach – A13	30
Hall in Tirol – Münzergasse	
Vomp – Raststätte A12	36
Vomp – An der Leiten	
Zillertaler Alpen	42
Brixlegg – Innweg	44
Kramsach – Angerberg	47
Wörgl – Stelzhamerstrasse	50
Kufstein – Franz Josef Platz (Zentrum)	53
Kufstein – Festung	56
Lienz – Amlacherkreuzung	58
Lienz – Sportzentrum	62
Beurteilungsunterlagen	
Grenzwerte aus Gesetzen, Verordnungen und Richtlinien	64
IG-L Überschreitungen	
Auflistung der Überschreitungen nach IG-L	67

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM10 Staub Schwebestaub gemäss IG-L (Mittels kontinuierlich registrierender Staubmonitore

und PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder

einem Standortfaktor, wenn dieser vorhanden ist.)

Staub (= TSP-Staub = TSP-K) Schwebestaub (Gesamtstaub) gemäss IG-L bzw. TLRV (wird aus dem PM10

Staub durch Multiplikation mit dem Faktor 1,2 gewonnen.)

TSP total suspended particles

NO Stickstoffmonoxid
NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

Gl.JMW gleitender Jahresmittelwert

MMW Monatsmittelwert
TMW Tagesmittelwert

IGL 8-MW Maximaler Achtstundenmittelwert laut Immissionsschutzgesetz Luft

Max 8-MW Maximaler Achtstundenmittelwert (gleitend)
Max 3-MW Maximaler Dreistundenmittelwert (gleitend)

Max 1-MW Maximaler Einstundenmittelwert

Max HMW Maximaler Halbstundenmittelwert

- Keine Berechnung eines Tagesmittelwertes, da weniger

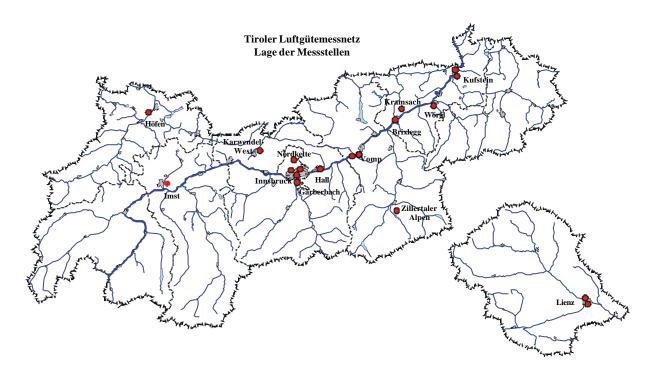
als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen

VDI Verein Deutscher Ingenieure

2. FVO 2. Verordnung gegen forstschädliche Luftverunreinigungen


BGBl.Nr. 89/1984 (2. Forstverordnung)

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (IG-L,BGBl. 115/97)

n.a. nicht ausgewertet

BESTÜCKUNGSLISTE												
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	STAUB	NO	NO2	O3	СО					
Höfen – Lärchbichl	880 m	-	-	-	-	0	-					
Imst – Imsterau	726 m	-	0	О	О	-	-					
Karwendel – West	1730 m	-	-	-	-	0	-					
Innsbruck – Andechsstrasse	570 m	-	0	О	О	0	О					
Innsbruck – Fallmerayerstrasse	580 m	О	0	О	О	-	О					
Innsbruck – Sadrach	670 m	-	-	-	-	0	-					
Nordkette	1950 m	-	-	О	О	0	-					
Gärberbach – A13	680 m	-	0	О	О	-	-					
Hall in Tirol – Münzergasse	560 m	-	0	О	О	-	-					
Vomp – Raststätte A12	550 m	-	0	О	О	-	О					
Vomp – An der Leiten	520 m	-	0	О	О	-	-					
Zillertaler Alpen	1930 m	-	-	-	-	О	-					
Brixlegg – Innweg	520 m	О	0	-	-	-	-					
Kramsach – Angerberg	600 m	-	-	0	0	0	-					
Wörgl – Stelzhamerstrasse	510 m	-	0	О	О	-	-					
Kufstein – Franz Josef Platz	500 m	О	0	О	О	-	-					
Kufstein – Festung	560 m	-	-	-	-	О	-					
Lienz – Amlacherkreuzung	670 m	О	0	О	О	-	О					
Lienz – Sportzentrum	670 m	-	-	-	-	О	-					

Staub December D				Jänner								
Liferblich	Bezeichnung der M	Iessstelle	SO2	PM10 Staub ¹⁾	TSP Staub	NO	NO2 1)	О3	CC			
Insterau KARNENDEL West West West Ip 0 0 0 0,M,I P,M IP IP 0 0 0 0,M,I P IP IP IP 0 0 0 0,M,I P IP IP IP IP 0 0 0 0,M,I IP	HÖFEN Lärchbichl							P				
NARWENDEL				I_{P}	0	0	Ö,M,I					
INNSBRUCK Ip 0 0 O,M,I P In	KARWENDI	EL						P,M				
INNSBRUCK Fallmeraverstrasse INNSBRUCK Sadrach NORDRETTE 0 0 0 0 P.M GÄRBERBACH Ip 0 0 0 O.M.I GÄRBERBACH Ip 0 0 O.M.I HALLINTIROL Ip 0 0 O.M.I Mintergrasse Rassidar Ip 0 O.O.M.I In 0 O.M.I In 0 O.M.I Rassidar	INNSBRUC			Ip	0	0	Ö.M.I	P	0			
INNSBRUCK Sadrach NORDKETTE D D O D P,M GÄRBERBACH AJ3 HALL IN TIROL Minzergasse INP O D D D D D D D D D D D D D D D D D D	INNSBRUC	K	0	•	-		, ,	-	0			
NORDKETTE GARBERBACH A13 HALLINTIROL Minzergasse Inp 0 0 0 0,M,I HALLINTIROL Minzergasse VOMP Raststätte A12 VOMP An der Leiten ILIP 0 0 0 0,M,I ILI	INNSBRUC			-r	Ü	ŭ .	3,1.2,1	D				
GÄRBERBACH A13 HALL IN TIROL Münzergasse Ip 0 0 0 0 0,M,1 Minzergasse VOMP Raststätte A12 Ip 0 0 0 0,M,1 Ip Ip 0 0 0 0,M,1 Ip		E				0	0	_				
HALL IN TROL Ip 0 0 0 0 0 0 0 0 0								P,M				
Nonzergasse Ip 0 0 O,M.I Raststätte A12 Ip 0 0 Ö,M.I O,M.I VOMP	A13			I_{P}	0	0						
Rassitite A12 VOMP An der Leiten Ip 0 0 0 0,M,I ZILLERTALER ALPEN BRIXLEGG Innweg 0 Ip I I I 0 0 0 0 0,M,I P,M Ander Leiten ZILLERTALER ALPEN BRIXLEGG Innweg 0 Ip I I I I I I I I I I I I I I I I I	Münzergass			I_P	0	0	Ö,M,I					
An der Leiten ZILLERTALER ALPEN BRIXLEGG Innweg O Ip I I I O Ö P RRAMSACH Angerberg WORGL Stelzhamerstrasse Ip O O Ö P WORGL Stelzhamerstrasse Ip O O Ö P RESTANDOSEPHATZ Tenar-Josef-Platz O Ip O O Ö Ip O O Ö P RESTANDOSEPHATZ FESTUNG LIENZ Anlacherkreuzung O Ip O O Ö O,M,I LIENZ Anlacherkreuzung O Ip O O Ö,M,I LIENZ Sportzentnun O Grenzwerte der nachstehenden Beurteilungsgrundlagen eingehalten F Überschreitung der Grenzwerte der 2. FVO M ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen P ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation Ö ÖAW: Überschreitung der Immissionsgrenzkonzentration für Dikosysteme E Überschreitung der EU-Informationsstufe von 0.180 mg/m³ als Einstundenmittelwert B Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Stickstoff BoßL 44/1987, Anlage 2 I Überschreitung von Grenzwerten (für Stickstoff BoßL 44/1987, Anlage 2 I Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz der gemän phen Pm20-		12		I_P	0	0	Ö,M,I		0			
ALPEN BRIXLEGG Innweg RRAMSACH Angerberg WÖRGL Stelzhamerstrasse Ip 0 0 0 Ö,M,I KUPSTEIN Franz-Josef-Platz UESTEIN Festung LIENZ Amlacherkreuzung 0 Ip 0 0 Ö,M,I LIENZ Sportzentrum 0 Ip 0 0 Ö,M,I LIENZ Sportzentrum 0 Ip 0 0 Ö,M,I LIENZ Sportzentrum 0 Ip 0 O Ö,M,I LIENZ Sportzentrum 0 Ip 0 O Ö,M,I LIENZ Sportzentrum 0 Ip 0 O Ö,M,I LIENZ Sportzentrum 0 Grenzwerte der nachstehenden Beurteillungsgrundlagen eingehalten F Überschreitung der Grenzwerte der 2. FVO M ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen P ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation Ö ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme E Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 Überschreitung von Grenzwerten für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Grenzwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Ip Überschreitung ein simmissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Für Voralarm laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Valarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 Uberschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-W		n		I_P	0	0	Ö,M,I					
Innweg		ER						P,M				
Angerberg WÖRGL Stelzhamerstrasse LIP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3	0	I_P	I							
WÖRGL KUFSTEIN Franz-Josef-Platz O Ip O O O O O Festung LIENZ Amlacherkreuzung O Ip O O O O O O O N,M,I P LIENZ Sportzentrum O Grenzwerte der nachstehenden Beurteilungsgrundlagen eingehalten F Überschreitung der Grenzwerte der 2. FVO M O OAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen P OAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation O OAW: Überschreitung der Immissionsgrenzkonzentration für ökosysteme E Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 I Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Ip Überschreitung des im Immissionsschutzgesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warmstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warmstufe 2 X Geräteausfall						0	Ö	P				
RUFSTEIN Festung P P P P P P P P P	WÖRGL			I_{P}	0	0	Ö,M,I					
KUFSTEIN Festung LIENZ Amlacherkreuzung 0 Ip 0 0 Ö,M,I LIENZ Sportzentrum 0 Grenzwerte der nachstehenden Beurteilungsgrundlagen eingehalten F Überschreitung der Grenzwerte der 2. FVO M ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen P ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation Ö ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation Ö ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme E Überschreitung der EU-Informationsstufe von 0.180 mg/m ³ als Einstundenmittelwert B Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 I Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Ip Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall	KUFSTEIN	ſ	0	I_{P}	0	0	Ö					
LIENZ Amlacherkreuzung 0 Ip 0 0 O,M,I LIENZ Sportzentrum 0 Grenzwerte der nachstehenden Beurteilungsgrundlagen eingehalten F Überschreitung der Grenzwerte der 2. FVO M ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen P ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation Ö ÖAW: Überschreitung der Immissionsgrenzkonzentration für ökosysteme E Überschreitung der EU-Informationsstufe von 0.180 mg/m³ als Einstundenmittelwert B Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 Überschreitung von Grenzwerten für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Ip Überschreitung des im Immissionsschutz Gesetz Luft genannten Tageszell-wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft genannten Tageszell-wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutz Gesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. V Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon Vorwarnung !! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall	KUFSTEIN			-				P				
LIENZ Sportzentrum O Grenzwerte der nachstehenden Beurteilungsgrundlagen eingehalten F Überschreitung der Grenzwerte der 2. FVO M ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen P ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation Ö ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme E Überschreitung der EU-Informationstufe von 0.180 mg/m³ als Einstundenmittelwert B Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 I Überschreitung von Grenzwerte (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Ip Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10- Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. V Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall	LIENZ		0	Ιp	0	0	Ö.M.I		0			
Grenzwerte der nachstehenden Beurteilungsgrundlagen eingehalten Überschreitung der Grenzwerte der 2. FVO MÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen PÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation ÖÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme EÜberschreitung der EU-Informationsstufe von 0.180 mg/m³ als Einstundenmittelwert BÜberschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 IÜberschreitung von Grenzwerten für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Ip Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. VÜberschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall	LIENZ			1	-		- , ,	p				
 Überschreitung der Grenzwerte der 2. FVO ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme Überschreitung der EU-Informationsstufe von 0.180 mg/m³ als Einstundenmittelwert Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50μg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall 			stehenden Re	urteilungsgrundla	gen eingehalte	n		1				
ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme E Überschreitung der EU-Informationsstufe von 0.180 mg/m ³ als Einstundenmittelwert B Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 I Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBl. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). IP Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. V Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 K Geräteausfall					Son emgenate							
 ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme Überschreitung der EU-Informationsstufe von 0.180 mg/m³ als Einstundenmittelwert Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50μg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutz Gesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 Geräteausfall 		=			ration für den l	Menschen						
 Ö ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme Überschreitung der EU-Informationsstufe von 0.180 mg/m³ als Einstundenmittelwert B Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 I Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Ip Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. V Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall 			_	•								
 Überschreitung der EU-Informationsstufe von 0.180 mg/m³ als Einstundenmittelwert Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50μg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon-Vorwarnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 Geräteausfall 			_	=		_						
 Überschreitung der Grenzwerte der Vereinbarung gemäss Art. 15aB-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBl. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50μg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 Geräteausfall 			-	-		-	wert					
Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2 Überschreitung von Grenzwerten (für Stickstoffdioxid und Ozon auch Zielwert) gem. Immissionsschutzgesetz Luft (BGI 62/2001) zum Schutz der menschlichen Gesundheit. Iv Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBI. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). Ip Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. V Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon Vorwarnung Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 Geräteausfall	B Üb	erschreitung der C	renzwerte de	r Vereinbarung ge	emäss Art. 15al	B-VG über die	e					
 62/2001) zum Schutz der menschlichen Gesundheit. IV Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBl. II Nr. 298/2001) zum Schutz von Ökosy und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). IP Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50μg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. V Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon Vorwarnung !! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall 												
und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach / Angerberg). IP Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50µg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. V Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon Vorwarnung !! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall						uch Zielwert)	gem. Immissions	schutzgesetz Li	ıft (BGB			
 Überschreitung des im Immissionsschutz Gesetz Luft genannten Tagesziel wertes von 50μg/m³ für PM10. Der PM10-Tagesgrenzwert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 35 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon Vorwarnung Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 Geräteausfall 								zum Schutz vor	n Ökosyst			
 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen. V Überschreitung der Grenzwerte nach VDI-Richtlinie 2310 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon Vorwarnung !! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall 		· ·				<i>O O</i> ,		PM10. Der PN	<i>410-</i>			
 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon Vorwarnung !! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall 									zu 35			
 ! Überschreitung der jeweiligen Grenzwerte für Voralarm laut Smogalarmgesetz bzw. für Ozon Vorwarnung !! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 !!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 X Geräteausfall 												
 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 1 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 1 Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2 Geräteausfall 		_				galarmgesetz b	zw. für Ozon Vo	rwarnung				
!!! Überschreitung der jeweiligen Grenzwerte für Alarmstufe 2 laut Smogalarmgesetz bzw. für Ozon-Warnstufe 2X Geräteausfall												
X Geräteausfall		0 0	•									
1) Del Jamoshitterwert with in del ixalendersieht mellt beultellt			wird in der k	Jurziihersicht nich	t beurteilt							

Kurzbericht für den Jänner 2003

Messnetz

Am Messnetz wurden keine Standortveränderungen durchgeführt. Die Verfügbarkeiten der gemessenen Schadstoffkomponenten sind den Messstellentabellen zu entnehmen.

HINWEIS:

Die hier veröffentlichten PM 10-Angaben sind Werte, die aus kontinuierlichen Messungen unter Verwendung von PM 10-Probenahmeköpfen erhoben wurden, anschließend und gemäss Anlage 1 des BGBl.II 344/2001 (Messkonzeptverordnung) mit dem sog. "Defaultfaktor" (= 1,3) multipliziert wurden. Die angegebenen TSP-Staubwerte ergeben sich gem. zitiertem Gesetz durch Multiplikation der einzelnen PM 10-Werte mit dem weiteren Faktor 1,2.

Klimaübersicht (MZA, Regionalstelle f. Tirol u. Vlbg.)

Der Jänner war insgesamt nicht außergewöhnlich, sorgte aber endlich für den lang ersehnten Schnee. Die erste messbare Schneedecke (mehr als nur Schneeflecken) in Innsbruck wurde am 7. Jänner verzeichnet. Das ist der späteste Zeitpunkt seit Beginn der Schneeaufzeichnungen 1929, an dem in der Landeshauptstadt der erste Schnee lag.

Die Temperaturen entsprachen ziemlich genau dem langjährigen Jännerschnitt oder lagen maximal 1 Grad darüber. Warme und kalte Perioden wechselten sich dabei ab. 24 Frosttage sind um drei weniger als normal, 9 Eistage (ganztägig unter 0 Grad) hingegen um zwei mehr als gewöhnlich. Somit hatte es bereits im Jänner 2003 mehr Eistage als im ganzen Jahr 2002!

Auch beim Niederschlag zeigt sich nichts Außergewöhnliches. Die Nordtiroler Stationen erreichten meist zwischen 80 und 125% ihres Solls, nur im Außerfern wurden knapp 150% erreicht. Mit 16 bis 18 Niederschlagstagen wurde die Norm doch um 4 bis 5 Tage überschritten. Anders in Osttirol: Hier fielen kaum 50% (Lienz 20 mm = 44%) des langjährigen lännerwertes

Durch die zeitweiligen Schneefälle lag in der Landeshauptstadt ab dem 7. Jänner durchgehend eine Schneedecke, wenn auch meist nur eine dünne. Schneebegünstigt der Alpennordrand, in Reutte sammelte sich der Schnee schon auf eine Höhe von knapp 60 cm an.

Es ging der Jahreszeit entsprechend wenig Wind (Innsbruck 2 Sturmtage, im Jänner normal 3). Die Sonne kam mit 80 Stunden sehr knapp an die im Jänner zu erwartenden 84 Stunden heran.

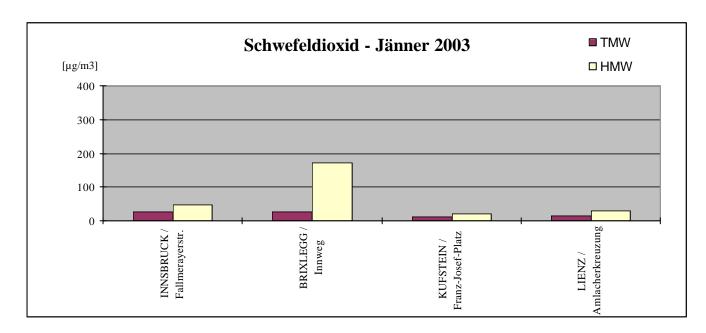
Luftschadstoffübersicht

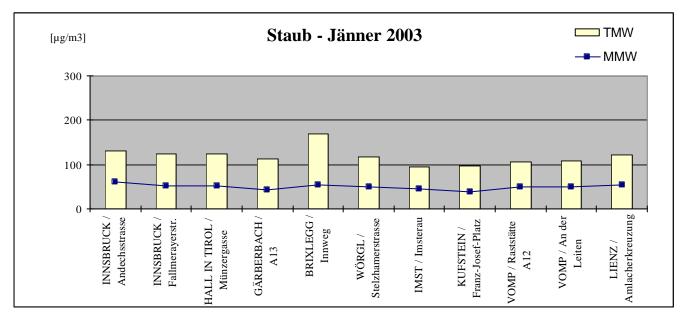
Die Auswertung für **Schwefeldioxid**ergibt für BRIXLEGG/Innweg mit 177 μ g SO2 /m³ Luft den höchsten gemessenen Halbstundenmittelwert des Monats; die Kurzzeitbelastung an den anderen Standorten ist deutlich niedriger, wenngleich der höchste Monatsmittelwert mit 13 μ g/m³ nicht für BRIXLEGG/Innweg, sondern für INNSBRUCK/Fallmerayerstrasse auszuweisen ist. Das Kriterium für die Grenzwertüberschreitung gem. 2 Verordnung gegen forstschädliche Luftverunreinigungen ist überall eingehalten.

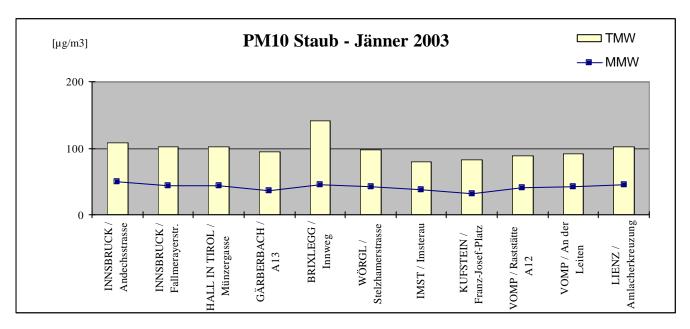
Hinsichtlich der Auswertungen für den **Schwebstaub** (=TSP Staub) ergibt sich anhand der berechneten Werte bis auf die Messstelle Brixlegg/Innweg die Einhaltung des gültigen Tagesgrenzwertes von 150 μ g/m³ gem. IG-Luft. In BRIXLEGG/Innweg wurde am 10.1. mit 170 μ g/m³ eine Überschreitung gemessen. Mit 61 μ g/m³ für das Monatsmittel ist die Belastung an der Messstelle INNSBRUCK/Andechsstrasse am höchsten.

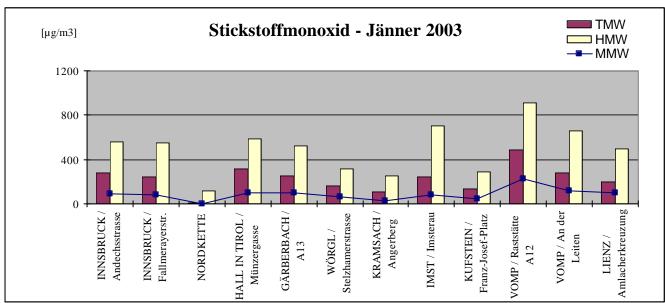
Beim **PM 10-Staub** ist bei der Messstelle INNSBRUCK/Andechsstrasse die Dauerbelastung mit einem Monatsmittelwert von 50 μg/m³ Luft deutlich über dem Niveau der restlichen Messstellen; beim Kurzzeitwert (Halbstundenmittelwert) sind die beiden Messorte Wörgl/ Stelzhammerstrasse mit 513 μg/m³ und Kufstein/ Franz-Josef-Platz mit 482 μg/m³ am stärksten belastet. An allen 11 Standorten ist der gesetzliche Tagesgrenzwert von 50 μg/m³ deutlich überschritten, der höchste Wert beträgt 142 μg/m³ in BRIXLEGG/Innweg. Da eine 35 malige Überschreitung des Tagesgrenzwertes pro Kalenderjahr zulässig ist, kann eine Grenzwertverletzung im Sinne des Gesetzes erst im Jahresbericht ausgewiesen werden. Beim **Stickstoffmonoxid**liefert die Messstelle VOMP/Raststätte A12 mit 224 μg/m³ Luft den höchsten Monatsmittelwert.

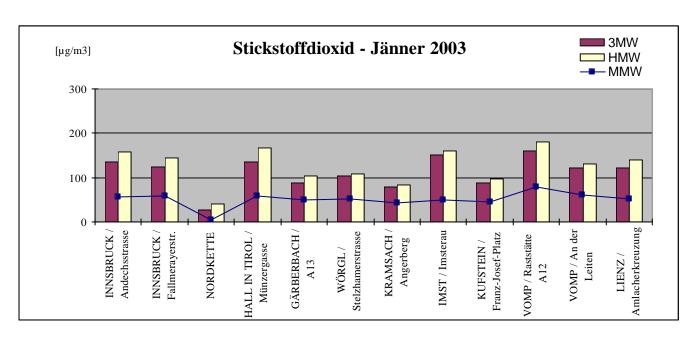
Beim **Stickstoffmonoxid**liefert die Messstelle VOMP/Raststätte A12 mit 224 μg/m3 Luft den höchsten Monatsmittelwert. Der höchste Kurzzeitwert (Halbstundenmittelwert) ergibt sich ebenfalls an dieser Messstelle und beträgt 914 μg/m³. Eine Grenzwertverletzung gem. VDI-Richtlinie (1000 μg/m³) liegt daher für den Monat Jänner nicht vor.

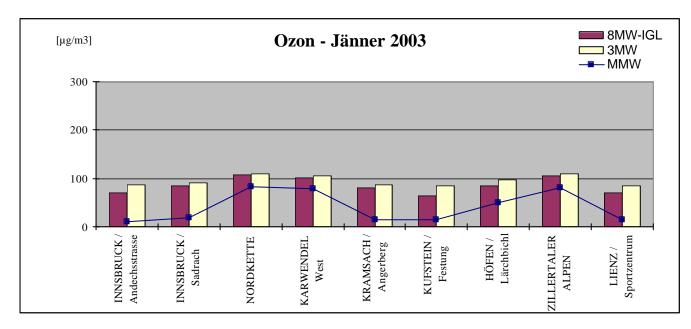

Bei den **Stickstoffdioxid**immissionen ist der gesetzliche Kurzzeit**grenz**wert zum Schutz des Menschen an allen Messstellen eingehalten. Der **Ziel**wert gem. IG-Luft zum Schutz des Menschen (Tagesmittel $80\,\mu g$ NO2/m³) ist bei 8 von 12 Messstellen überschritten. Der höchste Wert ergibt sich bei der Messsetelle VOMP/Raststätte A12 mit $120\,\mu g/m3$. Hinsichtlich der Dauerbelastung ist diese Station mit $79\,\mu g$ NO2/m³ auch der höchstbelastete Standort des Tiroler Luftgütemessnetzes.

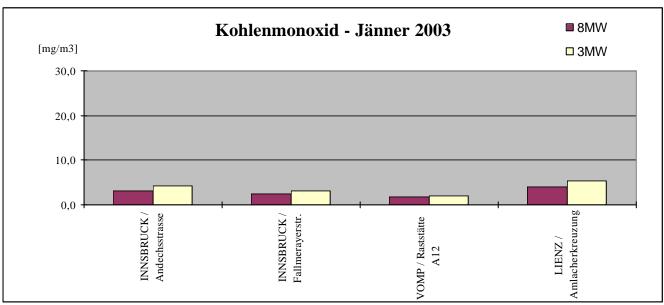

Die **Ozon** messungen zeigen im Berichtsmonat an den 3 Bergstationen (Karwendel West, Nordkette, Zillertaler Alpen) Spitzenwerte bis zu 111 μ g/m³ Luft, die größte Belastung an den talnahen Standorten beträgt 98 μ g/m³ (HÖFEN/Lärchbichl). Hinsichtlich der Dauerbelastung (Monatsmittelwert) zeigt sich wiederum der große Unterschied zwischen den höhergelegenen und talnahen Messstellen. Während an ersteren Monatsmittelwerte zwischen 78 und 82 μ g/m³ berechnet werden, erreichen die am Talboden befindlichen Messstellen mit Ausnahme des Standortes HÖFEN/Lärchbichl Konzentrationswerte unterhalb von 20 μ g/m³. Der Wert an der Messstelle HÖFEN/Lärchbichl liegt bei 49 μ g/m³. Die gesetzlichen Zielwerte sind überall eingehalten. Alle Stationen sind jedoch nach den von der

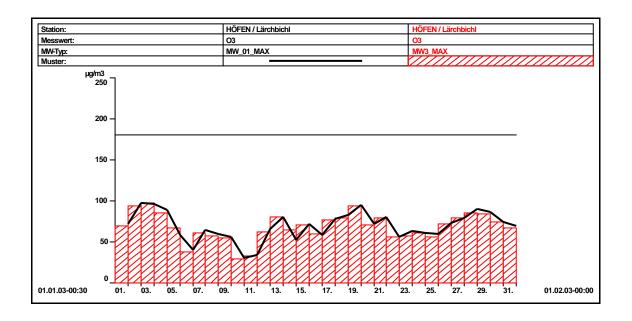

Österreichischen Akademie der Wissenschaften empfohlenen wirkungsbezogenen Grenzwerten zum Pflanzenschutz überschritten, hinsichtlich des Humanschutzes die drei Messstellen INNSBRUCK/Nordkette, ZILLERTALER ALPEN und Karwendel West.


Bei der Schadstoffkomponente Kohlenmonoxid ist der gesetzliche Grenzwert überall deutlich eingehalten.


Stationsvergleich






Zeitraum: JÄNNER 2003 Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	TSP	NO		NO2		03				СО			
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^{\text{3}}$	$\mu \text{g/m}^{\text{3}}$		$\mu g/m^3$		$\mu g/m^3$					mg/m³		
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									65	65	70	72	72			
02.									76	78	94	98	98			
03.									85	89	97	96	97			
04.									73	75	84	89	89			
So 05.									50	60	66	58	59			
06.									35	35	38	40	40			
07.			<u> </u>						56	58	61	64	65		<u> </u>	
08.									48	48	57	59	60			
09.									33	47	54	56	57			
10.			<u> </u>						23	24	29	30	30	ļ	 	<u> </u>
11.									27	27	32	34	34			
So 12.									51	52	62	65	65			
13.									72	74	80	81	85			
14.			 						34	71	64	52	59		 	
15.									66	66	71	72	74			
16.									49	59	59	59	59			
17.									69	70	76	78	78			
18.									71	71	79	82	83			
So 19.									84	86	94	95	96			
20.									59	65	70	71	72			
21.									74	73	78	80	81			
22.			<u> </u>						46	46	55	56	58		Ī	
23.									47	54	57	63	65			
24.									49	56	61 55	60	61			
25.									47	47	55	59	60			
So 26.									67 71	68	72 79	73	73 79			
27. 28.									71 74	77 74	78 85	79 90	79 90			
										74						
29.									81	82 75	83	86	86		I I]
30. 31.									63	75 62	74 67	74 60	76 69			
31.									60	62	67	69	69			

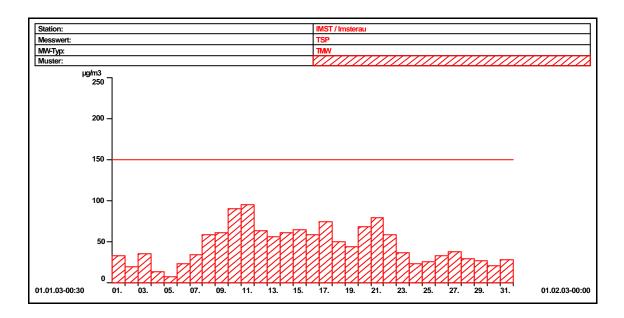
	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						98	
Max.1-MW						98	
Max.3-MW						97	
IGL8-MW						85	
Max.8-MW						89	
Max.TMW						78	
97,5% Perz.							
MMW						49	
Gl.JMW							

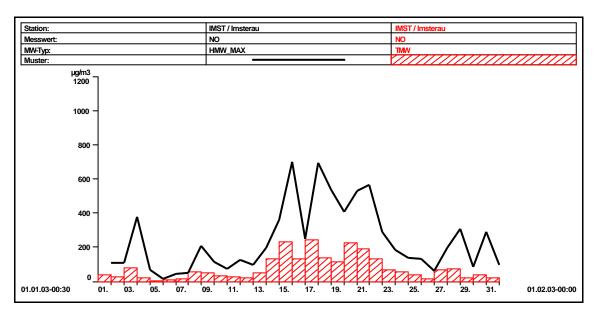
JÄNNER 2003 Zeitraum: HÖFEN / Lärchbichl Messstelle:

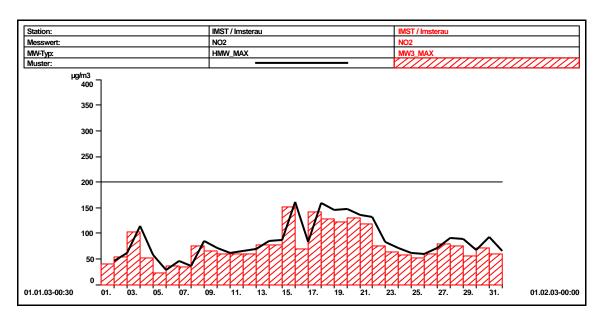
В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme						18	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						0	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit							
IG-L:	Zielwerte menschliche Gesundheit						0	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: JÄNNER 2003 Messstelle: IMST / Imsterau


	SC)2	PM10	TSP	NO		NO2		03				CO			
			Staub	Staub												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			27	32	111	29	42	45								
02.			16	19	112	37	55	61								
03.			30	36	379	51	111	114								
04.			11	13	71	33	53	57								
So 05.			6	7	17	14	26	29								
06.			19	23	46	23	42	46								
07.			28	33	53	22	35	37								
08.			49	58	209	39	81	85								
09.			51	61	115	51	70	71								
10.			75	90	75	51	61	62								
11.			79	95	126	52	61	65								
So 12.			53	63	99	41	67	69								
13.			47	56	195	53	82	86								
14.			50	60	361	59	83	87						<u> </u>		
15.			54	64	703	75	154	161								
16.			49	59	248	56	75	84								
17.			61	74	692	80	149	159								
18.			41	49	538	70	136	146								
So 19.			37	44	409	70	139	147								
20.			57	68	530	85	133	136								
21.			66	79	566	78	122	132								
22.			48	58	293	57	79	84								
23.			30	36	186	50	69	72								
24.			19	23	138	42	59	61								
25.			21	25	134	36	58	61								
So 26.			27	32	60	38	68	72								
27.			31	38	196	58	88	92								
28.			24	29	308	51	80	88								
29.			22	26	87	37	61	67								
30.			17	20	292	44	88	92								
31.			23	28	99	41	64	65								


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31	31	31	31		
Verfügbarkeit		100%	100%	98%	98%		
Max.HMW				703	161		
Max.1-MW					154		
Max.3-MW					151		
IGL8-MW							
Max.8-MW							
Max.TMW		79	95	245	85		
97,5% Perz.							
MMW			45	77	49		
Gl.JMW		25			30		

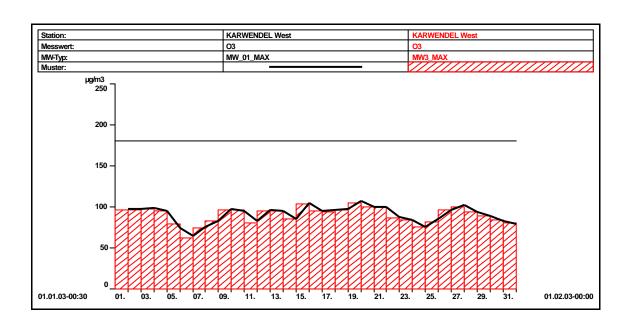

JÄNNER 2003 Zeitraum: Messstelle: IMST / Imsterau

В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	со
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					22		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		8			1		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: JÄNNER 2003 Messstelle: KARWENDEL West

	SC)2	PM10	TSP	NO		NO2		03					co		
			Staub	Staub												
	μg	$/m^3$	μg/m³	$\mu g/m^3$	$\mu \text{g/m}^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									93	93	96	98	99			
02.									86	95	96	97	102			
03.									94	95	97	98	102			
04.									93	94	94	94	95			
So 05.									65	80	79	74	78			
06.									53	57	61	64	65			
07.									70	71	73	75	76			
08.									78	78	82	82	83			
09.									92	92	96	97	98			
10.									92	95	96	95	95			
11.									69	73	80	83	83			
So 12.									90	91	95	96	97			
13.									93	93	94	95	95			
14.									83	87	84	85	85			
15.									101	102	103	104	104			
16.									93	94	95	95	96			
17.									87	92	94	95	98			
18.									93	94	96	98	98			
So 19.									101	102	105	106	107			
20.									97	99	100	100	100			
21.									99	99	99	100	100			
22.			<u> </u>						81	83	86	87	87			
23.									82	84	84	84	85			
24.									57	75	76	75	76			
25.									64	74	81	85	89			
So 26.									94	94	95	96	97			
27.									96	97	100	102	103			
28.									90	92	93	94	94			
29.									87	90	89	89	90			
30.									78	83	84	83	84			
31.									77	78	80	79	79			


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						107	
Max.1-MW						106	
Max.3-MW						105	
IGL8-MW						101	
Max.8-MW						102	
Max.TMW						99	
97,5% Perz.							
MMW						78	
Gl.JMW							

Zeitraum: JÄNNER 2003 Messstelle: KARWENDEL West

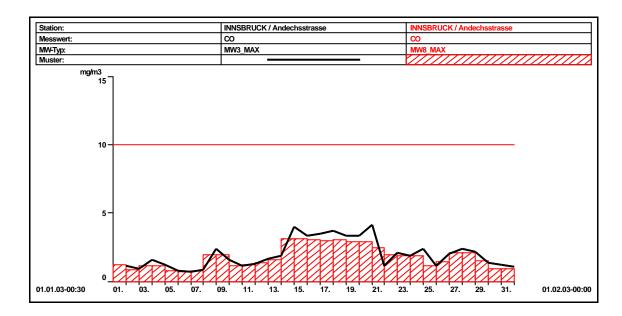
Ве	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme						30	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						2	
	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit							
IG-L:	Zielwerte menschliche Gesundheit						0	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
	Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

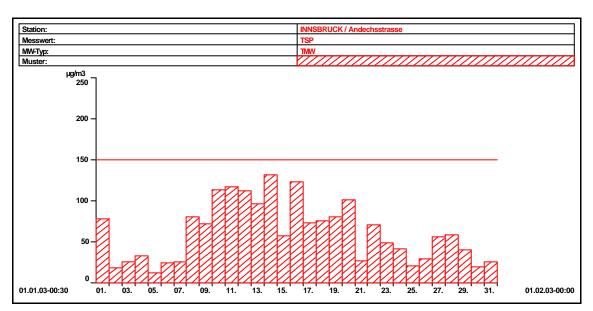
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)

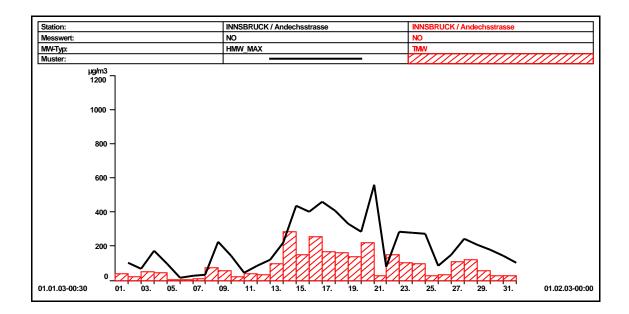
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

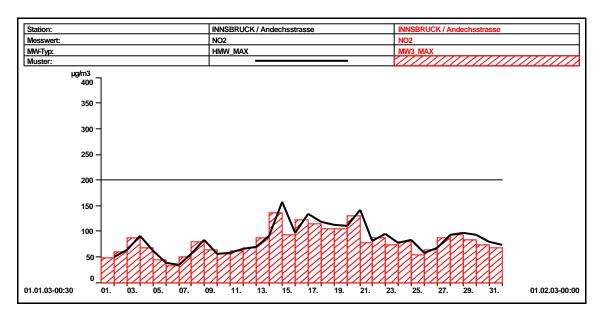
 $[\]ddot{\text{U2}}\text{)} \ddot{\text{U}} \text{berschreitung des SO2-Grenzwertes gemäss } \ddot{\text{O}} \text{AW nur für das 97,5Perzentil der HMW des Monats}$

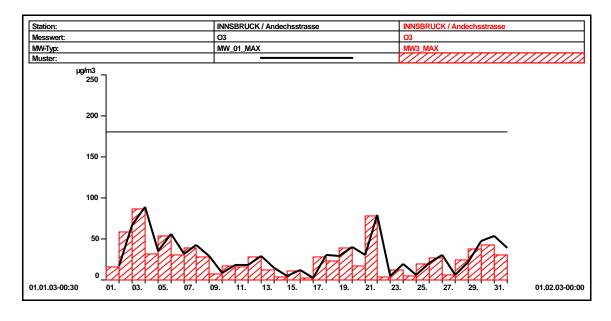
Messstelle: INNSBRUCK / Andechsstrasse


	SO)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^{3}$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			65	78	104	33	50	50	9	9	15	17	20	1.2	1.3	1.3
02.			15	18	70	35	64	65	41	41	58	67	68	0.9	0.9	1.1
03.			21	25	172	46	90	92	70	71	86	89	91	1.1	2.0	2.0
04.			27	32	98	52	62	62	15	16	32	34	34	1.2	1.1	1.2
So 05.			10	12	18	20	37	39	48	48	54	55	58	0.8	0.8	0.9
06.			20	25	26	25	32	35	22	24	30	31	31	0.7	0.7	0.8
07.			21	26	36	32	52	55	30	31	39	42	43	0.8	0.9	1.0
08.			67	80	224	52	81	84	18	18	28	28	30	1.9	2.6	2.7
09.			60	71	147	53	56	56	6	6	7	8	9	1.9	1.3	1.3
10.			95	114	45	49	57	57	12	12	17	18	20	1.2	1.2	1.2
11.			97	117	88	51	64	65	10	10	15	18	18	1.2	1.4	1.5
So 12.			93	112	119	48	67	69	21	21	28	28	30	1.4	1.7	2.1
13.			79	95	222	68	89	91	7	7	12	14	15	1.6	2.1	2.6
14.			109	131	438	100	147	158	3	3	4	4	4	3.1	4.3	4.6
15.			47	57	400	64	96	96	7	7	11	12	13	3.1	4.1	4.1
16.			102	122	458	87	130	134	1	2	2	2	2	3.1	3.7	4.1
17.			60	72	407	77	118	119	14	15	27	30	33	3.0	3.9	4.5
18.			62	75	331	79	109	112	12	12	23	28	30	3.0	3.7	4.1
So 19.			67	80	285	74	109	110	22	23	38	40	42	2.9	3.4	3.7
20.			84	101	559	93	135	142	7	7	16	30	30	2.9	4.4	5.4
21.			22	27	77	45	79	81	58	60	78	78	79	2.4	1.3	1.6
22.			58	70	286	75	91	94	3	18	4	4	5	1.9	2.6	2.8
23.			40	48	280	57	74	78	5	6	12	19	20	1.9	1.9	2.2
24.			34	41	272	55	81	83	3	3	4	6	7	1.9	2.7	3.0
25.			17	20	83	40	56	57	12	13	19	20	21	1.1	1.3	1.3
So 26.			24	29	147	45	64	68	20	21	27	30	33	1.4	2.3	2.6
27.			46	55 50	245	65	89	93	3	4	6	6	7	2.1	2.9	2.9
28.			48	58	208	65	93	97	7	10	25	22	46	2.1	2.4	2.6
29.			33	39	182	67	85	92	26	27	37	47	53	1.5	1.4	1.8
30.			16	20	145	52	75 70	79 74	32	34	43	53	53	0.9	1.3	1.4
31.			21	25	106	52	70	74	21	22	30	39	40	0.9	1.2	1.3


	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31	31	31
Verfügbarkeit		100%	100%	98%	98%	98%	99%
Max.HMW				559	158	91	5.4
Max.1-MW					147	89	4.4
Max.3-MW					136	86	4.2
IGL8-MW						70	
Max.8-MW						71	3.1
Max.TMW		109	131	284	100	41	2.7
97,5% Perz.							
MMW			61	86	57	11	1.2
Gl.JMW		27			35		

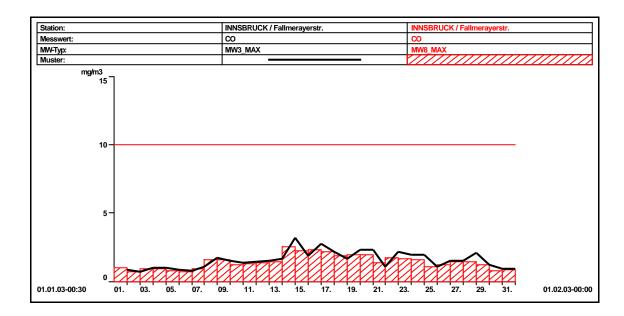

Messstelle: INNSBRUCK / Andechsstrasse

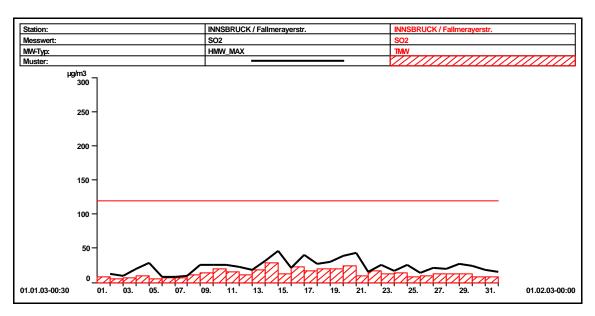

В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					25	1	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					3	0	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		0
IG-L:	Zielwerte menschliche Gesundheit		14			3	0	
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		0
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

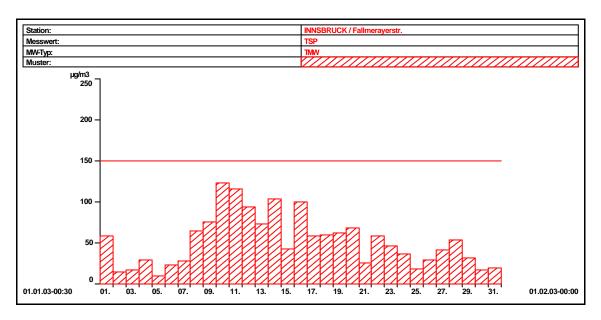

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

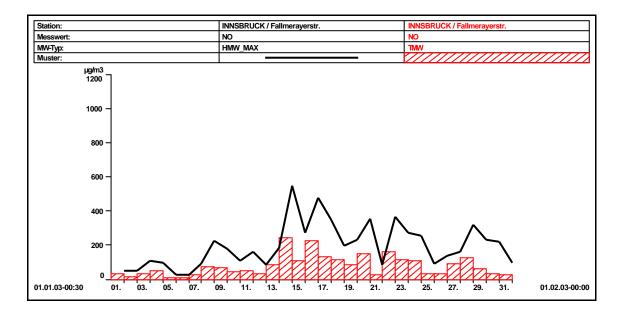
Messstelle: INNSBRUCK / Fallmerayerstrasse

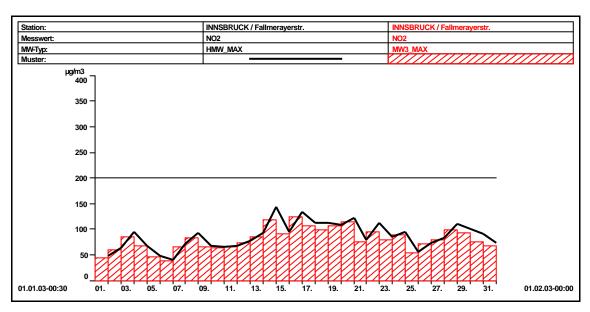
	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	$\mu g/m^3$	$\mu \text{g/m}^{\text{3}}$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	9	13	49	59	51	36	45	48						1.0	0.9	1.0
02.	6	10	12	14	49	38	61	63						0.7	0.8	0.8
03.	7	19	14	17	109	49	94	95						0.9	1.2	1.3
04.	10	29	24	28	96	58	68	68						0.9	1.0	1.1
So 05.	5	8	8	10	29	26	48	48						0.8	0.9	1.0
06.	6	9	19	22	29	31	39	40						0.7	0.8	0.8
07.	7	10	23	27	91	43	66	72						0.9	1.3	1.6
08.	11	25	54	64	225	55	91	93						1.6	2.0	2.1
09.	14	25	62	75	177	58	66	68						1.6	1.3	1.4
10.	20	25	102	123	107	55	65	65						1.2	1.7	2.0
11.	16	24	96	115	161	56	66	68						1.3	1.5	1.5
So 12.	11	19	78	94	86	50	77	77						1.4	1.7	1.8
13.	18	31	60	73	186	66	91	93						1.5	1.8	1.8
14.	28	47	86	103	549	90	125	144						2.5	3.7	4.1
15.	13	21	35	42	271	61	94	96						2.3	2.2	2.3
16.	22	40	83	100	477	77	129	134						2.3	3.2	3.3
17.	17	28	49	59	350	73	112	113						2.2	2.4	2.5
18.	20	30	50	60	197	77	100	112						1.9	1.8	2.0
So 19.	20	39	52	62	232	69	106	108						1.9	2.4	2.5
20.	24	44	57	68	354 88	86	122 77	122 79						2.0 1.3	2.6	2.6
21.	10	16	21	25		53									1.1	1.2
22. 23.	17 12	26	48	58	365	77 60	102 84	112 85						1.8 1.6	2.4 2.3	2.7
23.	14	18 26	38 30	45 36	275 254	59	84 91	85 94						1.6	2.3	2.4 2.1
25.	9	15	15	36 17	92 92	43	56	56						1.0	1.2	1.3
So 26.	9	22	24	29	137	48	71	74						1.1	1.5	1.8
27.	13	20	34	41	157	63	82	83						1.4	1.5	1.8
28.	12	27	45	53	320	68	103	110						1.4	2.3	2.4
29.	12	25	26	31	234	68	98	100						1.3	1.4	1.4
30.	8	18	13	16	234	53	98 79	91						0.8	1.4	1.4
31.	9	16	16	20	96	55 55	73	73						0.8	1.1	1.0
31.	7	10	10	20	70	JJ	13	13						0.0	1.0	1.0


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31	31	31	31		31
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	47			549	144		4.1
Max.1-MW					129		3.7
Max.3-MW	40				124		3.2
IGL8-MW							
Max.8-MW							2.5
Max.TMW	28	102	123	246	90		2.0
97,5% Perz.	32						
MMW	13		51	78	58		1.0
Gl.JMW		26			39		


JÄNNER 2003 Zeitraum:

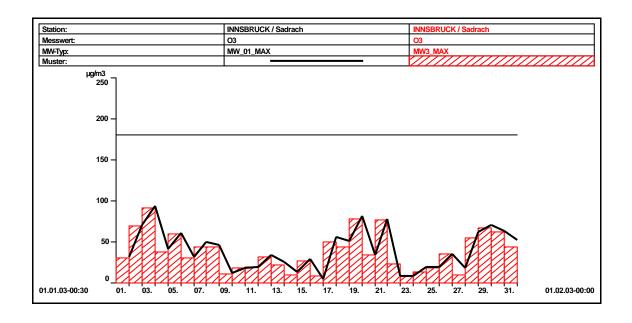

INNSBRUCK / Fallmerayerstrasse Messstelle:


В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					27		
ÖAW:	SO2-Kriterium-Erholungsgebiete	0						
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					2		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen	0						
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete	0		0				
IG-L:	Grenzwerte menschliche Gesundheit	0		0		0		0
IG-L:	Zielwerte menschliche Gesundheit		10			2		
IG-L:	Warnwerte	0				0		
IG-L:	Zielwerte Ökosysteme, Vegetation	0				n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2	0		0		0		0
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							


Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Sadrach

	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	$\mu \text{g/m}^{\text{3}}$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									24	24	30	32	40			
02.									62	63	69	71	71			
03.									84	84	91	93	94			
04.									23	34	37	41	46			
So 05.									54	54	59	61	61			
06.									23	24	29	32	32			
07.			 -						36	37	44	49	52			
08.									34	34	43	46	46			
09.									8	8	11	11	12			
10.			 -						13	13	18	18	20			
11.									13	13	19	19	20			
So 12.									26	26	32	33	34			
13.									13	13	22	25	28			
14.			 	ļ -					7	7	9	12	13			
15.									17	17	26	28	30			
16.									3	5	8	5	8			
17.									27	29	49	56	56			
18.									31	31	44	51	54			
So 19.									60	62	78	82	82			
20.									18	20	33	34	37			
21.									71	72	77	78	78			
22.] }						5	49	23	8	10			-
23.									6	6	8	8	9			
24.									8	8	13	20	25			
25.									13	13	18	19	20			
So 26.									27	30	35	35	43			
27.									7	8	9	18	20			
28.									32	33	55	61	71			
29.									55	59	67	70	73			
30.									54	57	62	63	64			
31.									35	37	44	52	55			


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						94	
Max.1-MW						93	
Max.3-MW						91	
IGL8-MW						84	
Max.8-MW						84	
Max.TMW						65	
97,5% Perz.							
MMW	·					19	
Gl.JMW							

Messstelle: INNSBRUCK / Sadrach

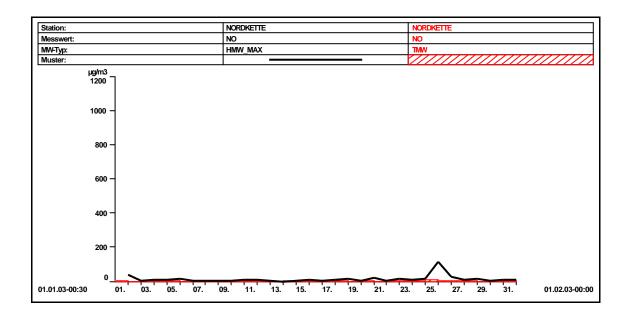
В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme						4	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)						0	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit							
IG-L:	Zielwerte menschliche Gesundheit						0	
IG-L:	Warnwerte							
IG-L:	Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

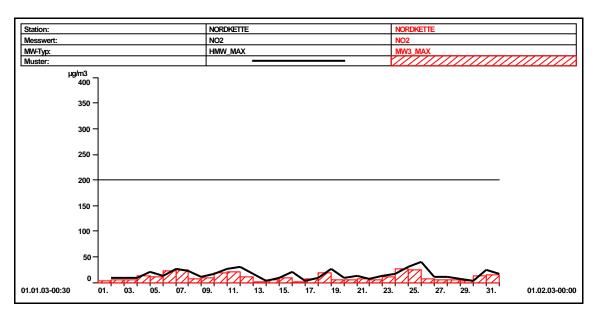
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)

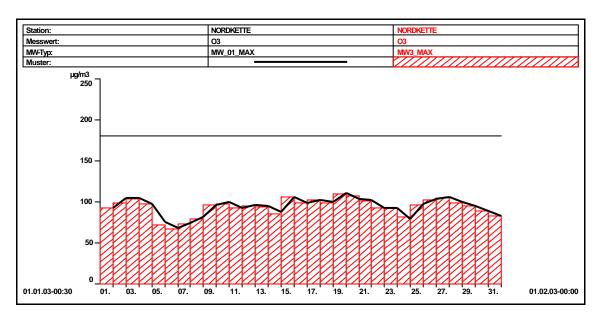
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

 $[\]ddot{\text{U2}}\text{)} \ddot{\text{U}} \text{berschreitung des SO2-Grenzwertes gemäss } \ddot{\text{O}} \text{AW nur für das 97,5Perzentil der HMW des Monats}$

Zeitraum: JÄNNER 2003 Messstelle: NORDKETTE


	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	$\mu \text{g/m}^3$	$\mu \text{g/m}^3$	$\mu \text{g/m}^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.					40	1	4	8	90	89	92	93	93			
02.					3	1	6	9	89	91	98	104	104			
03.					7	1	6	9	97	98	103	105	105			
04.					10	4	14	21	95	97	97	97	97			
So 05.					18	6	13	13	68	73	72	75	80			
06.					2	8	25	26	65	66	67	67	68			
07.	<u> </u>		ļ		3	8	23	23	68	68	73	74	74	<u> </u>		
08.					6	5	9	10	77	77	79	81	82			
09.					6	4	12	16	88	93	95	96	96			
10.	<u> </u>		<u> </u>		11	8	22	27	95	96	97	100	100	<u> </u>		
11.					12	8	26	30	83	83	92	92	94			
So 12.					6	3	13	17	93	94	95	96	96			
13.					1	1	2	2	93	93	94	94	94			
14.	<u> </u>		<u> </u>		6	3	7	10	83	88	85	87	94	<u> </u>		
15.					12	3	12	21	104	105	105	106	106			
16.					3	2	2	3	97	98	98	99	99			
17.					11	2	6	8	98	100	102	102	102			
18.					15	7	22	27	94	94	98	99	99			
So 19.					6	2	7	9	107	107	110	110	111			
20.					19	3	10	13	102	107	107	104	104			
21.					2	4	6	7	97	101	101	101	102			
22.			<u> </u> -		18	4	12	13	88	88	92	92	93			
23.					9	4	15	16	91	91	92	92	93			
24.					15	12	30	30	62	79	81	79	80			
25.					115	11	30	41	87	87	96	97	98			
So 26.					26	3	11	12	100	100	102	103	104			
27.					10	2	9	11	101	102	105	106	107			
28.					18	2	6	7	96	97	99	99	99			
29.	[4	2	3	4	93	95	94	95	95			
30.					7	6	20	25	82	89	88	88	88			
31.					8	9	16	17	78	80	82	83	83			


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				97%	97%	97%	
Max.HMW				115	41	111	
Max.1-MW					30	110	
Max.3-MW					27	110	
IGL8-MW						107	
Max.8-MW						107	
Max.TMW				11	12	104	
97,5% Perz.							
MMW				2	5	82	
Gl.JMW					3		


JÄNNER 2003 Zeitraum: Messstelle: NORDKETTE

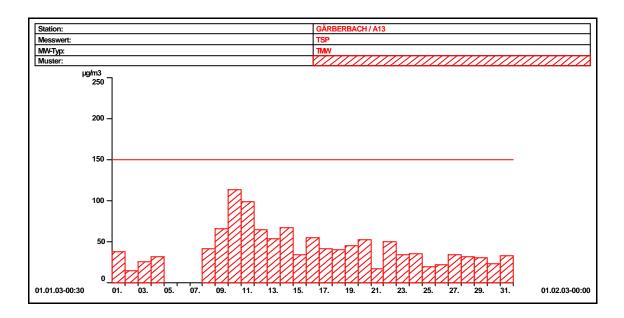
В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					0	31	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					0	5	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit					0		
IG-L:	Zielwerte menschliche Gesundheit					0	0	
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					0		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2					0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe						0	
OZONGESETZ:	Warnstufe 1						0	
OZONGESETZ:	Warnstufe 2						0	

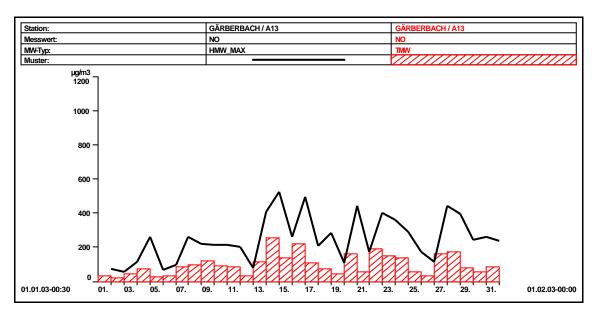
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

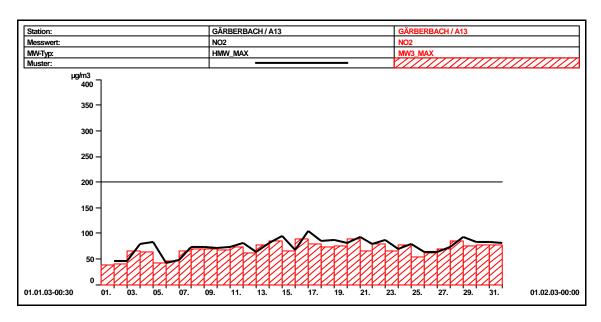
Zeitraum:

JÄNNER 2003 GÄRBERBACH / A13 Messstelle:

	SC)2	PM10	TSP	NO		NO2		03				co			
			Staub	Staub												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu \text{g/m}^{\text{3}}$		$\mu g/m^3$			$\mu g/m^3$				mg/m³		
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			31	37	76	24	43	47								
02.			12	14	56	23	44	45								
03.	ļ		21	26	115	42	73	79			ļ					
04.			26	31	264	50	74	82								
So 05.					68	28	43	43								
06.					98	33	47	48								
07.] -] -	261	48	70	73] -		 -					
08.			34	41	220	47	72	74								
09.			55	66	217	56	70	71								
10.	<u> </u>		94	113	215	56	71	74			<u> </u>			ļ		
11.			82	99	202	54	78	80								
So 12.			53	64	82	42	63	64								
13.			44	53	406	60	78	81								
14.	 		55	66	526	62	90	95] -		 					
15.			28	34	263	52	67	67								
16.			46	55	496	59	100	104								
17.			34	41	210	57	83	84								
18.			33	40	285	58	77	88								
So 19.			37	44	107	51	78	82								
20.			43	52	443	62	92	93								
21.			14	17	176	39	70	79								
22.			42	50	404	66	83	87								
23.			28	33	362	50	66	70								
24.			29	35	290	55	77 50	79								
25.			16	19	174	39	58	65								
So 26.			18	22	116	38	64	64								
27.			29	34	445	51	71	73								
28.			26	32	398	53	88	93								
29.			25	30	245	51	82	83] 		l I					
30.			19	23	263	48	78 70	84								
31.			27	32	239	57	79	81]					


	SO2 μg/m³	PM10 Staub μg/m³	TSP Staub μg/m³	NO μg/m³	NO2 μg/m³	Ο3 μg/m³	CO mg/m³
Anz. Messtage		28	28	31	31		-
Verfügbarkeit		92%	92%	98%	98%		
Max.HMW				526	104		
Max.1-MW					100		
Max.3-MW					89		
IGL8-MW							
Max.8-MW							
Max.TMW		94	113	257	66		
97,5% Perz.							
MMW			43	99	49		
Gl.JMW		23			41		


JÄNNER 2003 Zeitraum:


GÄRBERBACH / A13 Messstelle:

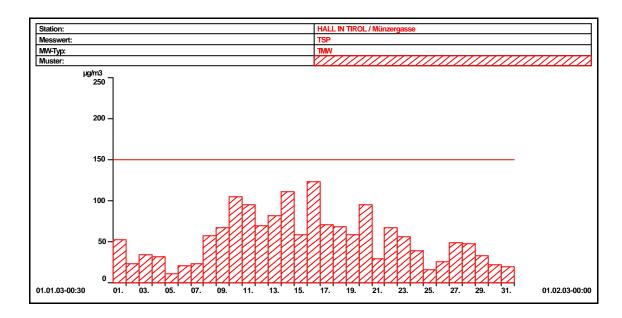
В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					24		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					Ü1		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		5			0		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

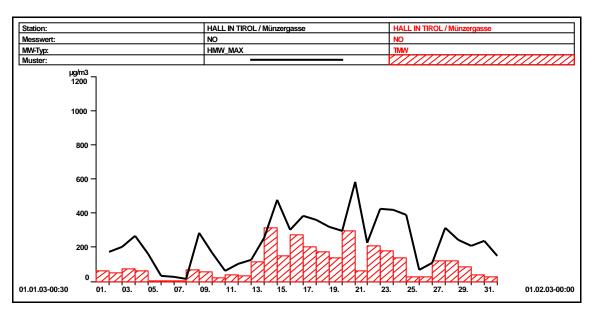
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

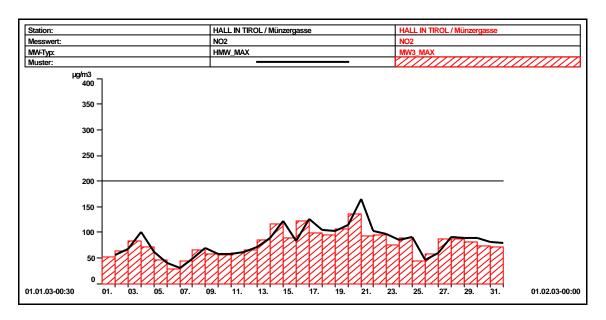
Zeitraum:

JÄNNER 2003 HALL IN TIROL / Münzergasse Messstelle:

	SC)2	PM10	TSP	NO		NO2		03				CO			
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^{\text{3}}$	μg/m³		$\mu g/m^3$			μg/m³		mg/m³				
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			43	52	176	34	54	56								
02.			19	22	205	44	66	67								
03.			28	34	268	51	94	100								
04.			26	31	160	51	62	62								
So 05.			9	10	33	22	37	41								
06.			17	21	29	24	30	31								
07.	ļ	<u> </u>	19	22	16	28	48	49						ļ		
08.			47	57	283	51	66	69								
09.			56	67	165	50	55	57								
10.		 -	87	104	65	46	56	57								
11.			79	95	103	49	61	61								
So 12.			58	69	129	49	68	72								
13.			68	81	254	71	86	88								
14.		 -	92	111	478	99	120	123								
15.			49	59	302	61	81	84								
16.			103	123	383	89	124	126								
17.			58	70	363	80	100	104								
18.			56	68	322	81	98	102								
So 19.			48	58	299	76	115	115								
20.			79	95	586	101	157	166								
21.			24	29	224	53	93	102								
22.	<u> </u>	l i	55	66	423	78	95	98						<u> </u>		
23.			46	55	421	61	84	85								
24.			32	39	393	55	90	92								
25.			12	15	67	37	45	47								
So 26.			21	26	108	40	58	60								
27.			41	49	316	65	88	90								
28.			39	47	244	63	89	89								
29.			27	32	207	73	84	88								
30.			18	22	240	58	79 - 0	81								
31.			16	19	153	48	78	79								


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31		
Verfügbarkeit		100%	100%	98%	98%		
Max.HMW				586	166		
Max.1-MW					157		
Max.3-MW					136		
IGL8-MW							
Max.8-MW							
Max.TMW		103	123	315	101		
97,5% Perz.							
MMW			53	103	58		
Gl.JMW		27			40		

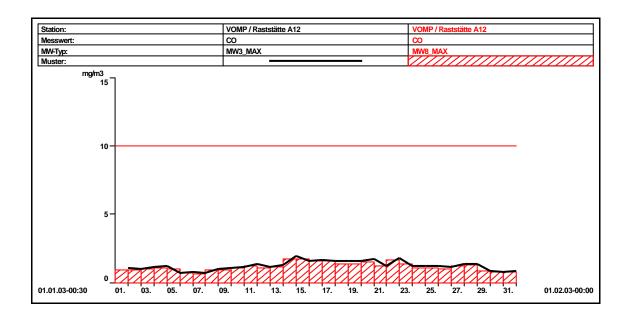

JÄNNER 2003 Zeitraum:


HALL IN TIROL / Münzergasse Messstelle:

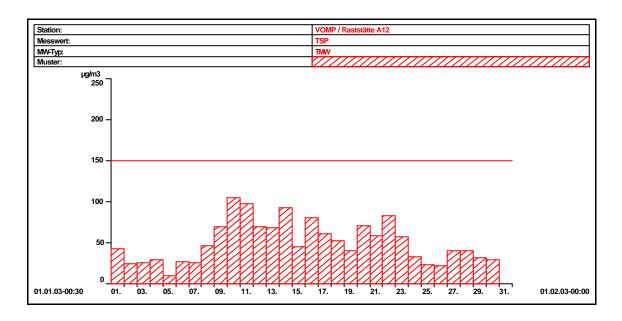
Ве	urteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					25		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					4		
	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		11			4		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

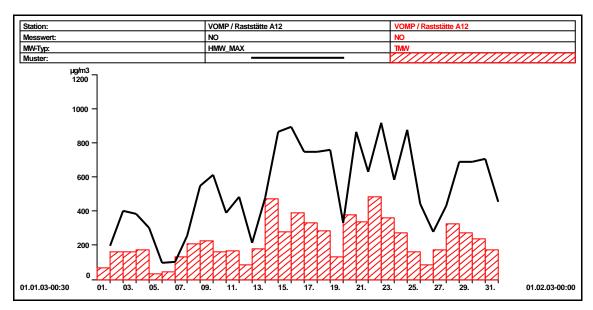
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

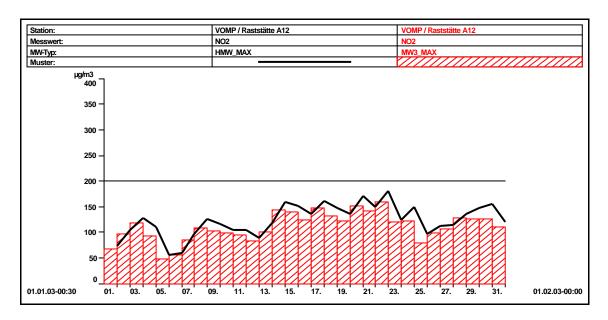
Messstelle: VOMP / Raststätte A12


	SO)2	PM10	TSP	NO		NO2		03			СО				
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			35	42	197	41	71	74						0.9	1.1	1.2
02.			19	23	399	68	101	105						0.9	1.1	1.1
03.			21	25	382	75	120	128						1.0	1.2	1.3
04.			24	29	303	73	108	111						1.1	1.4	1.5
So 05.			8	10	99	31	56	56						1.0	0.7	0.8
06.			22	26	106	38	57	60						0.7	0.8	0.8
07.			21	25	256	58	94	97	<u> </u>					0.6	0.7	0.8
08.			39	46	550	71	115	127						0.9	1.0	1.0
09.			58	69	612	76	115	117						0.9	1.2	1.2
10.			88	105	391	72	102	105	<u> </u>					1.1	1.2	1.3
11.			81	97	481	71	99	104						1.2	1.4	1.4
So 12.			58	69	214	61	85	88						1.1	1.2	1.3
13.			57	68	481	83	109	117						1.1	1.3	1.3
14.			77	92	866	120	158	159						1.8	2.0	2.2
15.			38	45	896	85	145	151						1.8	1.5	1.5
16.			66	80	745	99	135	135						1.6	1.7	1.8
17.			50	60	745	101	156	162						1.6	1.7	1.7
18.			43	52	758	99	135	147						1.3	1.7	1.7
So 19.			34	40	333	77	130	136						1.3	1.7	1.8
20.			58	70	866	115	158	171						1.5	1.9	2.0
21.			49	59	630	115	147	150						1.2	1.3	1.3
22.			69	82	914	115	174	180						1.7	2.0	2.2
23.			48	57	586	90	124	124						1.4	1.3	1.3
24.			27	32	875	76	130	150						1.1	1.3	1.3
25.			19	22	446	60	83	97						1.1	1.3	1.4
So 26.			18	22	278	60	107	113						1.0	1.2	1.3
27.			34	40	432	76	110	114						1.2	1.4	1.4
28.			33	40	690	88	131	136						1.3	1.2	1.4
29.			26	31	691	100	141	148						0.9	1.0	1.1
30.			24	29	708	91	135	155						0.8	0.8	0.9
31.					454	76	116	120						0.8	0.9	1.0

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		30	30	31	31		31
Verfügbarkeit		97%	97%	98%	98%		99%
Max.HMW				914	180		2.2
Max.1-MW					174		2.0
Max.3-MW					160		2.0
IGL8-MW							
Max.8-MW							1.8
Max.TMW		88	105	485	120		1.6
97,5% Perz.							
MMW			49	224	79		0.9
Gl.JMW		26			61		

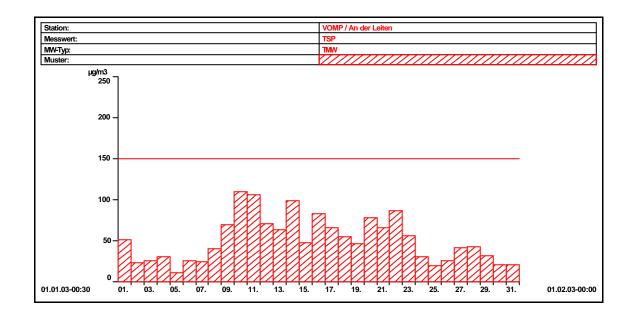

Messstelle: VOMP / Raststätte A12

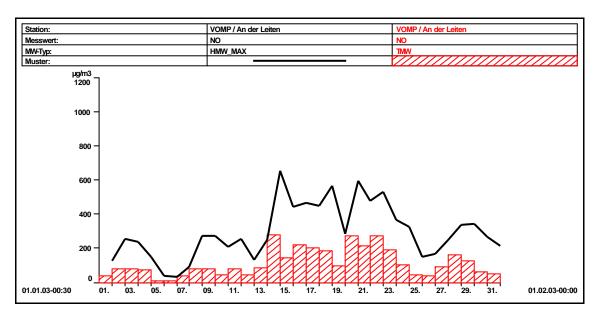

В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					29		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					13		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		0
IG-L:	Zielwerte menschliche Gesundheit		9			13		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		0
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2	·						

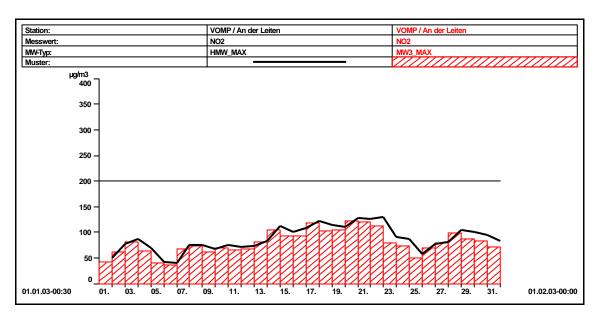

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

 $[\]ddot{U}1) \, \ddot{U}berschreitung \, des \, NO2\text{-}Grenzwertes \, gemäss \, \ddot{O}AW \, nur \, für \, den \, JMW \, (gleitend) \\ \ddot{U}2) \, \ddot{U}berschreitung \, des \, SO2\text{-}Grenzwertes \, gemäss \, \ddot{O}AW \, nur \, für \, das \, 97,5 Perzentil \, der \, HMW \, des \, Monats$

Messstelle: VOMP / An der Leiten


	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^{\text{3}}$	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			42	51	125	30	43	50								
02.			19	23	258	48	68	78								
03.			21	26	238	51	83	88								
04.			26	31	149	51	69	69								
So 05.			8	10	40	25	41	43								
06.			21	25	32	27	39	40								
07.			20	24	90	45	70	76								
08.			33	40	273	50	75	76								
09.			57	69	273	54	63	68								
10.			91	109	209	52	73	75								
11.			88	105	257	56	71	71								
So 12.			59	70	133	49	71	73								
13.			52	63	251	65	82	84								
14.	ļ	<u> </u>	82	99	655	89	112	112						ļ	<u> </u>	
15.			40	48	445	63	96	102								
16.			69	83	467	74	101	109								
17.			54	65	451	79	120	122								
18.			46	55	565	79	105	115								
So 19.			38	46	282	67	105	110								
20.			65	78	596	94	127	129								
21.			54	65	475	95	125	125								
22.	ļ	 	72	86	531	85	123	130						ļ	 	<u> </u>
23.			46	55	369	63	84	92								
24.			25	30	326	53	83	88								
25.			16	20	153	41	55	59								
So 26.			21	26	167	45	74	78								
27.			34	41	249	61	80	82								
28.			35	42	337	64	100	104								
29.		İ	26	31	344	76	98	102						ļ	l i	
30.			17	21	268	63	89	95								
31.			17	20	214	57	79	82								


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31	31	31	31		
Verfügbarkeit		100%	100%	98%	98%		
Max.HMW				655	130		
Max.1-MW					127		
Max.3-MW					122		
IGL8-MW							
Max.8-MW							
Max.TMW		91	109	282	95		
97,5% Perz.							
MMW			50	113	60		
Gl.JMW		28			42		

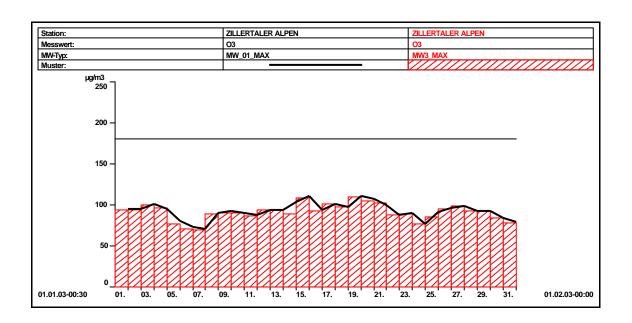

Messstelle: VOMP / An der Leiten

Be	urteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW: Z	Zielvorstellungen-Pflanzen,Ökosysteme					28		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW: 1	Richtwerte Mensch, Vegetation (nur NO2)					4		
	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L: 2	Zielwerte menschliche Gesundheit		11			4		
IG-L: `	Warnwerte					0		
IG-L: 2	Zielwerte Ökosysteme, Vegetation					n.a.		
	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310: 1	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

JÄNNER 2003 ZILLERTALER ALPEN Messstelle:

	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^{\text{3}}$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									90	90	94	95	96			
02.									90	92	94	94	95			
03.									95	96	99	101	102			
04.									91	95	95	95	95			
So 05.									67	79	77	80	81			
06.									67	70	71	73	73			
07.			<u> </u> -						67	67	69	71	71		 -	
08.									87	87	89	90	93			
09.									90	90	90	92	92			
10.			 -						85	90	90	90	91		 	
11.									76	77	86	87	88			
So 12.									92	92	93	94	95			
13.									91	93	93	93	94			
14.] -						80	85	88	103	105		<u> </u>	
15.									105	105	109	110	111			
16.									90	93	93	94	94			
17.									97	100	101	101	101			
18.									94	95	97	97	103			
So 19.									105	106	109	111	111			
20.									101	102	105	107	108			
21.									97	102	102	100	100			
22.			<u> </u>						85	88	87	88	89	ļ	<u> </u>	
23.									88	88	89	89	89			
24.									63	72	76	77	78			
25.									71	70	85	91	92			
So 26.									93	93	95	96	97			
27.									95	96	99	99	101			
28.									91	91	92	92	93			
29.									91	91	92	93	93		l I	
30.									77	82	84	84	84			
31.									74	75	77	79	81			


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						111	
Max.1-MW						111	
Max.3-MW						109	
IGL8-MW						105	
Max.8-MW						106	
Max.TMW						101	
97,5% Perz.							
MMW						80	
Gl.JMW							

Messstelle: ZILLERTALER ALPEN

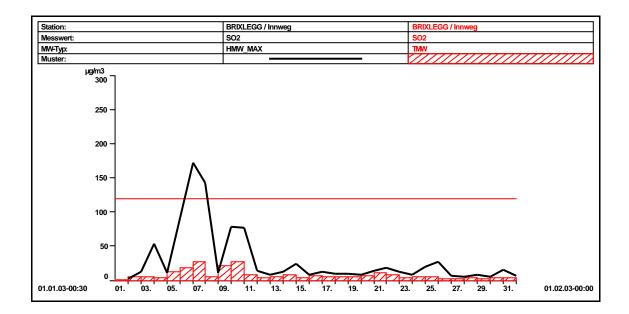
Beurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW: Zielvorstellungen-Pflanzen,Ökos	ysteme					31	
ÖAW: SO2-Kriterium-Erholungsgebiete							
ÖAW: Richtwerte Mensch, Vegetation	nur NO2)					4	
2.FVO: 2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW: SO2-Kriterium-allg.Siedlungsge	oiete						
IG-L: Grenzwerte menschliche Gesund	heit						
IG-L: Zielwerte menschliche Gesundhe	it					0	
IG-L: Warnwerte							
IG-L: Zielwerte Ökosysteme, Vegetation	on						
Art.15a B-VG: Vereinbarung über Immissionsgr Anlage 2	enzwerte,						
VDI - RL 2310: NO-Grenzwert							
EU - RL 92/72/EWG: Ozoninformationsstufe						0	
OZONGESETZ: Vorwarnstufe						0	
OZONGESETZ: Warnstufe 1						0	
OZONGESETZ: Warnstufe 2						0	

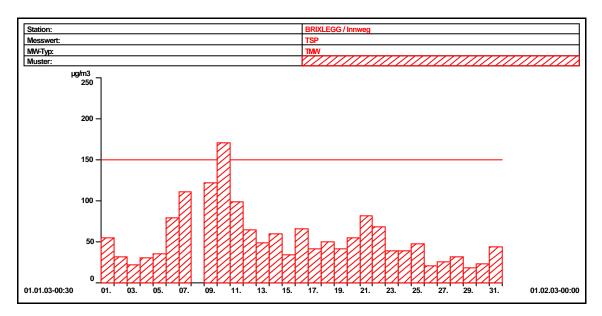
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

 $[\]ddot{\text{U2}}\text{)} \ddot{\text{U}} \text{berschreitung des SO2-Grenzwertes gemäss } \ddot{\text{O}} \text{AW nur für das 97,5Perzentil der HMW des Monats}$

JÄNNER 2003 BRIXLEGG / Innweg Messstelle:


	SO)2	PM10	TSP	NO		NO2				03				co	
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^{\text{3}}$	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	1	2	45	55												
02.	5	13	26	31												
03.	5	53	18	21												
04.	4	11	25	30												
So 05.	12	91	29	35												
06.	19	172	66	79												
07.	28	142	93	111					<u> </u>					ļ		
08.	6	11														
09.	21	78	101	122												
10.	27	77	142	170												
11.	8	13	82	99												
So 12.	4	8	53	64												
13.	6	12	41	49												
14.	9	24	50	60] -							
15.	4	8	28	34												
16.	7	12	55	66												
17.	5	9	34	41												
18.	6	10	41	49												
So 19.	5	8	34	41												
20.	7	14	45	55												
21.	11	18	68	81												
22.	8	13	56	67]]							
23.	4	8	32	38												
24.	5	20	32	38												
25.	5	27	39	47												
So 26.	3	6	17	21												
27.	3	5	21	25												
28.	4	8	26	31												
29.	3	5	15	18]] 		
30.	3	16	19	23												
31.	3	7	36	43												

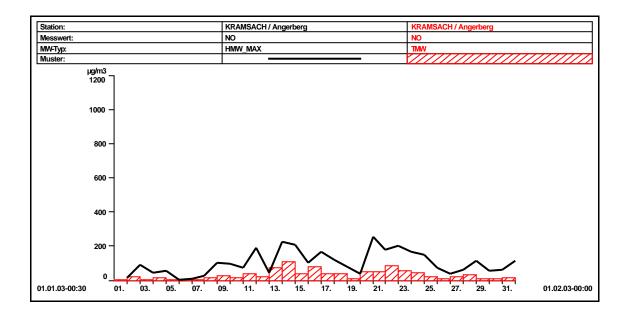

	SO2 μg/m³	PM10 Staub μg/m³	TSP Staub μg/m³	NO μg/m³	NO2 μg/m³	Ο3 μg/m³	CO mg/m³
Anz. Messtage	31	30	30	FB	μg.m	μg	g,
Verfügbarkeit	98%	99%	99%				
Max.HMW	172						
Max.1-MW							
Max.3-MW	80						
IGL8-MW							
Max.8-MW							
Max.TMW	28	142	170				
97,5% Perz.	37						
MMW	8		55				
Gl.JMW		29					

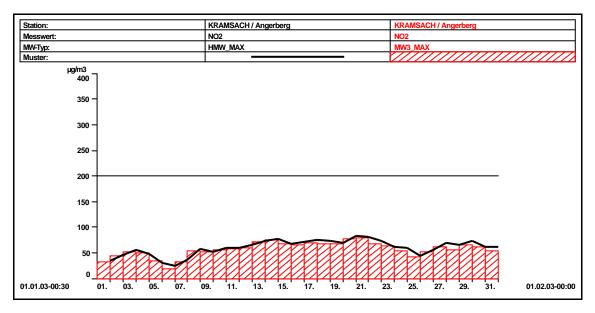
BRIXLEGG / Innweg Messstelle:

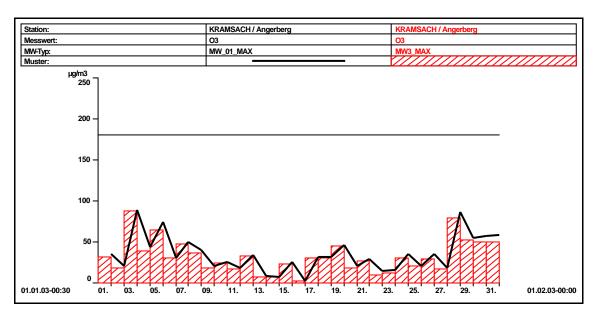
Ве	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme							
ÖAW:	SO2-Kriterium-Erholungsgebiete	0						
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)							
	2. VO gegen forstschädliche Luftverunreinigungen	0						
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete	0		1				
IG-L:	Grenzwerte menschliche Gesundheit	0		1				
IG-L:	Zielwerte menschliche Gesundheit		9					
IG-L:	Warnwerte	0						
IG-L:	Zielwerte Ökosysteme, Vegetation	0						
	Vereinbarung über Immissionsgrenzwerte, Anlage 2	0		0				
VDI - RL 2310:	NO-Grenzwert							
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

JÄNNER 2003 KRAMSACH / Angerberg Messstelle:


	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	$\mu g/m^3$	$\mu \text{g/m}^{\text{3}}$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.					14	22	33	35	19	20	31	35	40			
02.					94	30	44	46	16	16	18	20	27			
03.					45	25	54	56	81	82	87	89	90			
04.					54	36	45	48	25	26	39	44	45			
So 05.					6	12	26	32	55	56	65	74	76			
06.					10	17	21	25	28	28	30	30	30			
07.	<u> </u> -		 -		26	21	35	37	42	42	47	50	51			
08.					103	37	56	58	26	34	37	39	40			
09.					95	44	52	53	13	14	18	20	21			
10.] -		 -		71	43	57	59	17	18	24	25	26			
11.					188	47	60	61	13	14	17	18	18			
So 12.					42	43	62	65	24	25	32	34	34			
13.					224	62	73	73	5	5	7	8	8			
14.	<u> </u>		<u> </u>		206	65	75	77	4	4	7	7	8	ļ		
15.					104	48	65	68	16	16	22	25	25			
16.					165	54	70	71	1	3	2	3	3			
17.					123	55	72	75	21	21	30	32	32			
18.					82	58	72	73	21	23	30	31	34			
So 19.					37	47	67	69	37	38	44	45	46			
20.					256	68	80	84	12	20	18	21	28			
21.					178	65	82	82	18	20	26	29	37			
22.	<u> </u>		l i		202	58	71	73	7	6	10	14	17			
23.					165	49	62	62	8	8	12	15	18			
24.					151	40	52	61	14	16	31	35	36			
25.					72	32	44	44	16	19	20	21	22			
So 26.					38	33	52	55	23	24	29	34	38			
27.					61	48	69 50	70	13	13	17	18	18			
28.					114	42	59	65	37	40	79	86	87			
29.] [59	44	74	74	46	45	52	54	56] 		
30.					63	36	61	61	38	40	50	57	58			
31.					114	32	59	62	36	39	49	58	59			

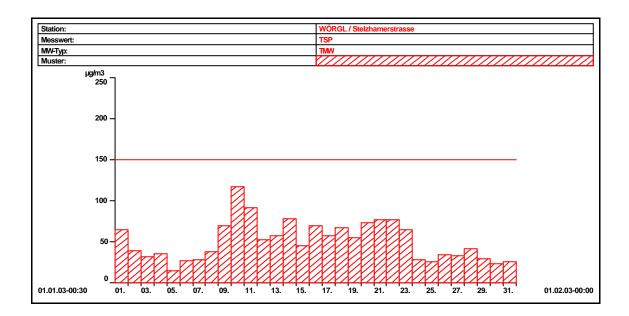

	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				256	84	90	
Max.1-MW					82	89	
Max.3-MW					79	87	
IGL8-MW						81	
Max.8-MW						82	
Max.TMW				110	68	49	
97,5% Perz.							
MMW				31	42	15	
Gl.JMW					23		

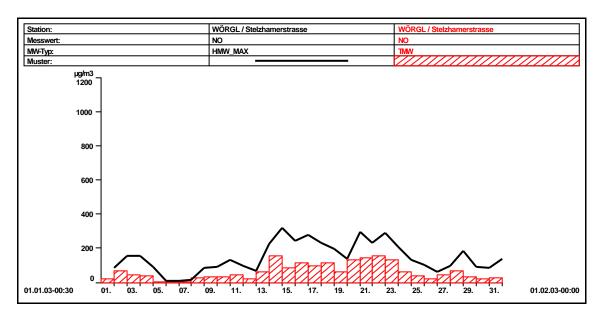

KRAMSACH / Angerberg Messstelle:

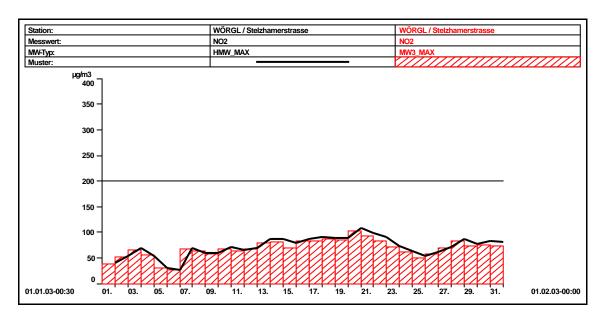
Ве	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					18	1	
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					0	0	
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete							
IG-L:	Grenzwerte menschliche Gesundheit					0		
IG-L:	Zielwerte menschliche Gesundheit					0	0	
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					0		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2					0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe						0	
OZONGESETZ:	Vorwarnstufe			·		·	0	
OZONGESETZ:	Warnstufe 1			·		·	0	
OZONGESETZ:	Warnstufe 2						0	

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

JÄNNER 2003 WÖRGL / Stelzhamerstrasse Messstelle:


	SO)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			54	65	83	29	40	41								
02.			32	39	156	41	54	55								
03.			26	31	158	51	65	70								
04.			29	35	94	42	54	54								
So 05.			12	14	7	21	29	31								
06.			22	26	11	21	26	27								
07.			23	28	14	35	69	69								
08.			31	37	85	44	59	60								
09.			58	69	94	51	61	61								
10.			97	117	134	52	70	71								
11.			76	91	98	51	65	67								
So 12.			44	52	67	44	67	70								
13.			47	57	228	68	86	88								
14.			65	78	318	74	84	87] -							
15.			38	45	246	54	73	79								
16.			57	69	276	65	82	87								
17.			47	56	234	64	85	92								
18.			55	66	199	72	87	90								
So 19.			45	54	138	65	87	88								
20.			60	72	298	83	105	108								
21.			64	76	231	85	98	100								
22.			64	77	292	73	88	91								
23.			54	64	209	57	73	73								
24.			23	28	132	47	64	64								
25.			21	25	105	43	53	53								
So 26.			28	34	60	44	61	62								
27.			27	33	97	54	71	72								
28.			34	41	184	55	85	87								
29.			24	29	92	62	76	77]]							
30.			19	22	86	54	81	83								
31.			21	25	138	48	75	80								


	SO2 μg/m³	PM10 Staub μg/m³	TSP Staub μg/m³	NO μg/m³	NO2 μg/m³	Ο3 μg/m³	CO mg/m³
A M	μg/III					μg/III	mg/m
Anz. Messtage		31	31	31	31		
Verfügbarkeit		100%	100%	98%	98%		
Max.HMW				318	108		
Max.1-MW					105		
Max.3-MW					103		
IGL8-MW							
Max.8-MW							
Max.TMW		97	117	159	85		
97,5% Perz.							
MMW			50	62	53		
Gl.JMW		27			30		

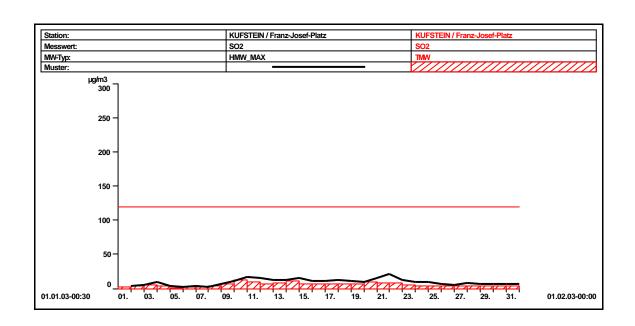

WÖRGL / Stelzhamerstrasse Messstelle:

В	eurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW:	Zielvorstellungen-Pflanzen,Ökosysteme					27		
ÖAW:	SO2-Kriterium-Erholungsgebiete							
ÖAW:	Richtwerte Mensch, Vegetation (nur NO2)					2		
2.FVO:	2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete			0				
IG-L:	Grenzwerte menschliche Gesundheit			0		0		
IG-L:	Zielwerte menschliche Gesundheit		11			2		
IG-L:	Warnwerte					0		
IG-L:	Zielwerte Ökosysteme, Vegetation					n.a.		
Art.15a B-VG:	Vereinbarung über Immissionsgrenzwerte, Anlage 2			0		0		
VDI - RL 2310:	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

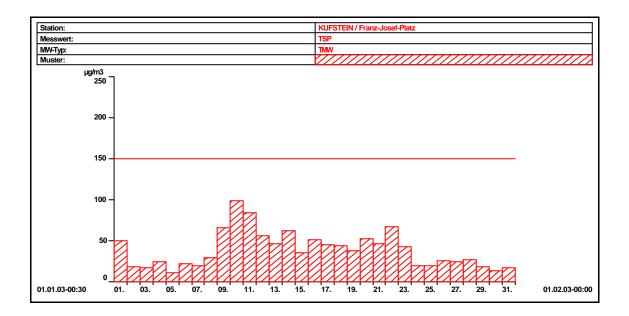
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

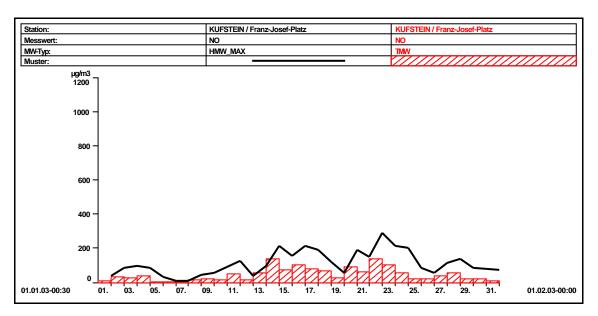
Messstelle: KUFSTEIN / Franz-Josef-Platz

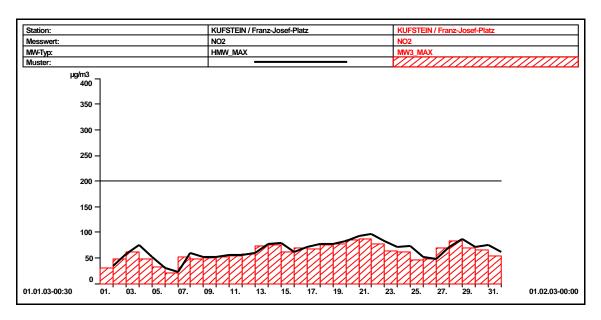
	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^3$	$\mu \text{g/m}^{\text{3}}$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	2	4	41	49	38	21	33	34								
02.	3	6	14	17	84	33	50	57								
03.	5	10	14	17	100	35	70	74								
04.	3	5	20	24	83	39	49	51								
So 05.	2	2	9	11	32	14	23	31								
06.	2	4	18	22	11	16	21	22								
07.	2	3	16	20	10	24	57	59								
08.	4	7	24	29	43	30	51	53								
09.	7	12	54	65	57	44	51	52								
10.	13	17	82	98	91	43	54	57	<u> </u>					<u> </u>		
11.	10	16	70	84	125	45	56	56								
So 12.	7	12	46	55	41	41	59	59								
13.	8	12	38	46	95	61	75	77								
14.	11	15	52	62	213	66	78	79								
15.	7	11	30	36	154	52	60	61								
16.	6	11	43	51	215	57	71	72								
17.	7	12	37	44	191	57	73	78								
18.	7	11	37	44	120	63	76	78								
So 19.	6	9	31	37	57	58	81	83								
20.	10	16	43	52	191	75	88	93								
21.	9	22	38	46	150	71	91	97								
22.	8	13	55	66	293	66	79	84] -] -		
23.	6	9	35	42	212	55	66	71								
24.	4	10	16	19	204	43	70	74								
25.	4	7	16	19	85	36	47	51								
So 26.	4	6	21	25	54	37	49	49								
27.	4	8	20	24	115	55	69	72								
28.	5	7	22	26	141	53	84	87								
29.	4	7	14	17	83	50	66	71] []		
30.	3	7	11	13	81	41	68	75								
31.	4	7	14	16	76	35	60	61								


	SO2 μg/m³	PM10 Staub µg/m³	TSP Staub µg/m³	NO μg/m³	NO2 μg/m³	$O3$ $\mu g/m^3$	CO mg/m³
Anz. Messtage	31	31	31	31	31		
Verfügbarkeit	98%	100%	100%	98%	98%		
Max.HMW	22			293	97		
Max.1-MW					91		
Max.3-MW	17				87		
IGL8-MW							
Max.8-MW							
Max.TMW	13	82	98	138	75		
97,5% Perz.	14						
MMW	6		38	46	46		
Gl.JMW		23			30		

Messstelle: KUFSTEIN / Franz-Josef-Platz


Be	urteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	03	CO
ÖAW: Z	Zielvorstellungen-Pflanzen,Ökosysteme					20		
ÖAW:	SO2-Kriterium-Erholungsgebiete	0						
ÖAW: 1	Richtwerte Mensch, Vegetation (nur NO2)					0		
	2. VO gegen forstschädliche Luftverunreinigungen	0						
ÖAW:	SO2-Kriterium-allg.Siedlungsgebiete	0		0				
IG-L:	Grenzwerte menschliche Gesundheit	0		0		0		
IG-L: 2	Zielwerte menschliche Gesundheit		5			0		
IG-L: `	Warnwerte	0				0		
IG-L: 2	Zielwerte Ökosysteme, Vegetation	0				n.a.		
	Vereinbarung über Immissionsgrenzwerte, Anlage 2	0		0		0		
VDI - RL 2310: 1	NO-Grenzwert				0			
EU - RL 92/72/EWG:	Ozoninformationsstufe							
OZONGESETZ:	Vorwarnstufe							
OZONGESETZ:	Warnstufe 1							
OZONGESETZ:	Warnstufe 2							

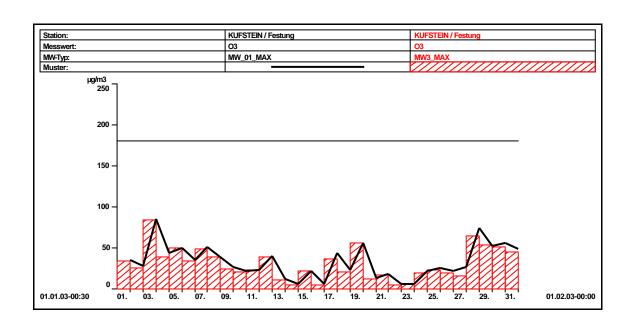

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

 $[\]ddot{\text{U2}}\text{)} \ddot{\text{U}} \text{berschreitung des SO2-Grenzwertes gemäss } \ddot{\text{O}} \text{AW nur für das 97,5Perzentil der HMW des Monats}$

Messstelle: KUFSTEIN / Festung

	SC)2	PM10	TSP	NO		NO2				03				CO	
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^{\text{3}}$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									24	25	34	35	36			
02.									15	23	26	28	30			
03.									65	73	84	84	86			
04.									20	21	39	43	44			
So 05.									45	45	49	49	58			
06.									31	31	33	35	35			
07.			<u> </u> -						44	44	48	51	52			
08.									30	30	38	38	41			
09.									19	20	24	26	26			
10.			<u> </u>						17	17	21	22	22	ļ		<u> </u>
11.									17	18	23	23	25			
So 12.									27	29	39	40	43			
13.									8	8	11	12	14			
14.			 						4	4	5	6	6			
15.									17	17	21	22	23			
16.									4	4	5	5	6			
17.									23	24	37	43	46			
18.									13	14	20	23	24			
So 19.									41	42	55	56	59			
20.									9	9	12	13	13			
21.									13	13	17	17	20			
22.									4	4	5	5	5	ļ		<u> </u>
23.									5	5	6	6	7			
24.									12	12	19	21	22			
25.									16	20	23	26	27			
So 26.									15	16	19	22	23			
27.									12	12	15	26	30			
28.									29	31	64 54	74	76			
29.									36	40	54	51	68			
30.									30	32	51	56	60			
31.									39	42	45	48	49			


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						97%	
Max.HMW						86	
Max.1-MW						84	
Max.3-MW						84	
IGL8-MW						65	
Max.8-MW						73	
Max.TMW						46	
97,5% Perz.							
MMW						14	
Gl.JMW							

Messstelle: KUFSTEIN / Festung

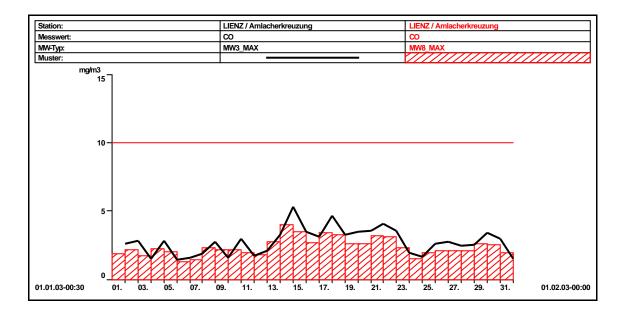
Beurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW: Zielvorstellungen-Pflanzen,Ökosyst	eme					1	
ÖAW: SO2-Kriterium-Erholungsgebiete							
ÖAW: Richtwerte Mensch, Vegetation (nu	r NO2)					0	
2.FVO: 2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW: SO2-Kriterium-allg.Siedlungsgebie	te						
IG-L: Grenzwerte menschliche Gesundhe	t						
IG-L: Zielwerte menschliche Gesundheit						0	
IG-L: Warnwerte							
IG-L: Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG: Vereinbarung über Immissionsgren: Anlage 2	zwerte,						
VDI - RL 2310: NO-Grenzwert							
EU - RL 92/72/EWG: Ozoninformationsstufe						0	
OZONGESETZ: Vorwarnstufe						0	
OZONGESETZ: Warnstufe 1						0	
OZONGESETZ: Warnstufe 2						0	

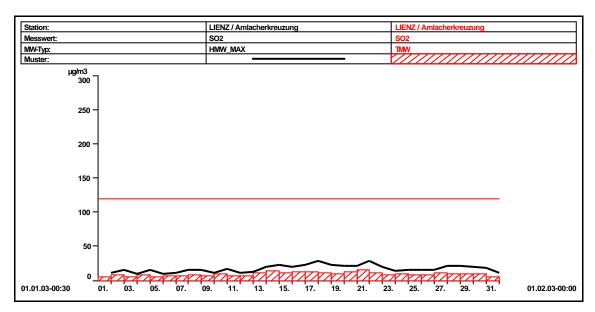
Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)

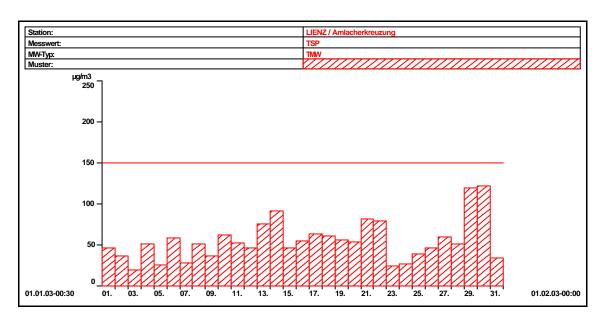
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

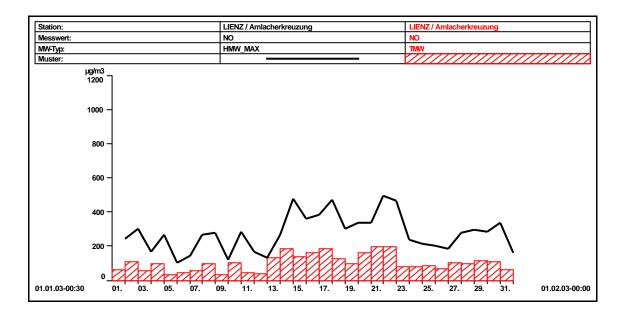
 $[\]ddot{\text{U2}}\text{)} \ddot{\text{U}} \text{berschreitung des SO2-Grenzwertes gemäss } \ddot{\text{O}} \text{AW nur für das 97,5Perzentil der HMW des Monats}$

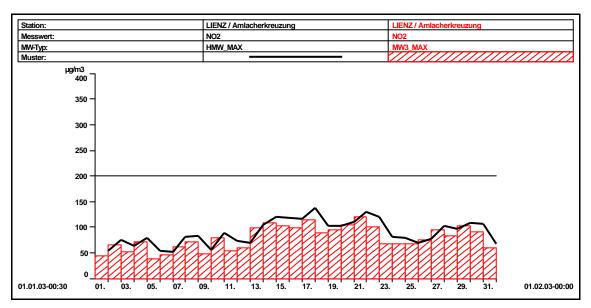
Messstelle: LIENZ / Amlacherkreuzung


01. 5 11 39 46 243 27 48 55 02. 8 16 30 36 305 40 67 75 2.2 3.4 03. 6 10 16 19 170 34 58 64 1.7 1.7 1.7 04. 8 15 42 51 269 41 77 80 2.3 3.0 So 05. 6 9 21 25 103 31 48 54 2.0 1.6 06. 7 11 48 58 145 30 44 52 1.3 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.6 23 28 266 40 77 82 1.4 1.9 2.2 1.4 1.9 2.3 3.2 2.2 1.4 1.9 2.2 3.2 1.6 1.2 39 46 </th <th></th> <th>SC</th> <th>)2</th> <th>PM10</th> <th>TSP</th> <th>NO</th> <th></th> <th>NO2</th> <th></th> <th></th> <th></th> <th>03</th> <th></th> <th></th> <th></th> <th>CO</th> <th></th>		SC)2	PM10	TSP	NO		NO2				03				CO	
Tag TMW HMW TMW TMW HMW TMW HMW TMW HMW HMW				Staub	Staub												
Tag TMW HMW TMW HMW TMW HMW TMW HMW 8-MW 8-MW 3-MW 1-MW HMW 8-MW 1-MW HMW 1-MW <		μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
01. 5 11 39 46 243 27 48 55 02. 8 16 30 36 305 40 67 75 03. 6 10 16 19 170 34 58 64 1.7 1.7 04. 8 15 42 51 269 41 77 80 2.3 3.0 80.05. 6 9 21 25 103 31 48 54 2.0 1.6 06. 7 11 48 58 145 30 44 52 1.3 1.7 07. 7 16 23 28 266 40 77 82 1.4 1.9 2.2 1.4 1.9 08. 8 16 42 50 279 45 76 83 2.3 3.2 2.2 1.4 1.9 2.2 3.2 1.4 <td< th=""><th></th><th></th><th>max</th><th></th><th></th><th>max</th><th></th><th>max</th><th>max</th><th>IGL</th><th>max</th><th>max</th><th>max</th><th>max</th><th>max</th><th>max</th><th>max</th></td<>			max			max		max	max	IGL	max	max	max	max	max	max	max
02. 8 16 30 36 305 40 67 75 2.2 3.4 03. 6 10 16 19 170 34 58 64 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.0 2.3 3.0 5.0 5.0 6. 9 21 25 103 31 48 54 2.0 1.6 0.6 7 11 48 58 145 30 44 52 11.3 1.7 0.7 7 16 23 2.8 2.66 40 77 782 11.4 1.9 9 8.8 16 42 50 2.79 45 76 83 2.3 3.2 2.2 1.4 1.9 9 1.1 1.9 1.3 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
03. 6 10 16 19 170 34 58 64 04. 8 15 42 51 269 41 77 80 So 05. 6 9 21 25 103 31 48 54 06. 7 11 48 58 145 30 44 52 07. 7 16 23 28 266 40 77 82 08. 8 16 42 50 279 45 76 83 09. 7 11 30 36 123 38 56 56 10. 10 17 51 61 285 52 86 89 2.2 1.4 10. 10 17 51 61 285 52 86 89 2.2 1.2 1.4 10. 10 17 51 61 285	01.	5	11	39	46	243	27	48	55						1.9	2.8	3.2
04. 8 15 42 51 269 41 77 80 2.3 3.0 So 05. 6 9 21 25 103 31 48 54 2.0 1.6 06. 7 11 48 58 145 30 44 52 1.3 1.7 07. 7 16 23 28 266 40 77 82 1.4 1.9 08. 8 16 42 50 279 45 76 83 2.3 3.2 09. 7 11 30 36 123 38 56 56 2.2 1.4 10. 10 17 51 61 285 52 86 89 2.2 3.2 11. 7 12 43 51 168 40 62 74 2.0 1.9 So 12. 6 12 39 46 131 33 68 69 103 106 2.7 3.9	02.	8	16	30	36	305	40	67	75						2.2	3.4	3.9
So 05. 6 9 21 25 103 31 48 54 2.0 1.6 06. 7 11 48 58 145 30 44 52 1.3 1.7 07. 7 16 23 28 266 40 77 82 1.4 1.9 08. 8 16 42 50 279 45 76 83 2.3 3.2 09. 7 11 30 36 123 38 56 56 2.2 1.4 10. 10 17 51 61 285 52 86 89 2.2 3.2 11. 7 12 43 51 168 40 62 74 2.0 1.9 So 12. 6 12 39 46 131 33 68 69 18 1.8 2.6 13. 12 19	03.	6	10	16	19	170	34	58	64						1.7	1.7	2.0
06. 7 11 48 58 145 30 44 52 1.3 1.7 07. 7 16 23 28 266 40 77 82 1.4 1.9 08. 8 16 42 50 279 45 76 83 2.3 3.2 09. 7 11 30 36 123 38 56 56 2.2 1.4 10. 10 17 51 61 2.85 52 86 89 2.2 3.2 11. 7 12 43 51 168 40 62 74 2.0 1.9 So 12. 6 12 39 46 131 33 68 69 103 106 2.7 3.9 14. 14 22 75 90 476 71 115 121 4.0 5.5 15. 11 21 39 46 359 62 112 119 3.5 4.3 <	04.	8	15	42	51	269	41	77	80						2.3	3.0	3.4
07. 7 16 23 28 266 40 77 82 08. 8 16 42 50 279 45 76 83 09. 7 11 30 36 123 38 56 56 10. 10 17 51 61 285 52 86 89 11. 7 12 43 51 168 40 62 74 So 12. 6 12 39 46 131 33 68 69 13. 12 19 63 76 269 69 103 106 13. 12 19 63 76 269 69 103 106 14. 14 22 75 90 476 71 115 121 40 5.5 15. 11 21 39 46 359 62 112 119 <td>So 05.</td> <td>6</td> <td>9</td> <td>21</td> <td>25</td> <td>103</td> <td>31</td> <td>48</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.0</td> <td>1.6</td> <td>2.1</td>	So 05.	6	9	21	25	103	31	48							2.0	1.6	2.1
08. 8 16 42 50 279 45 76 83 09. 7 11 30 36 123 38 56 56 10. 10 17 51 61 285 52 86 89 11. 7 12 43 51 168 40 62 74 So 12. 6 12 39 46 131 33 68 69 13. 12 19 63 76 269 69 103 106 13. 12 19 63 76 269 69 103 106 14. 14 22 75 90 476 71 115 121 15. 11 21 39 46 359 62 112 119 16. 13 23 46 55 387 68 114 116 2.7 3.3 17. 13 29 52 63 472 74	06.	7	11	48	58	145	30	44								1.7	2.3
09. 7 11 30 36 123 38 56 56 10. 10 17 51 61 285 52 86 89 11. 7 12 43 51 168 40 62 74 So 12. 6 12 39 46 131 33 68 69 13. 12 19 63 76 269 69 103 106 14. 14 22 75 90 476 71 115 121 4.0 5.5 15. 11 21 39 46 359 62 112 119 3.5 4.3 16. 13 23 46 55 387 68 114 116 2.7 3.3 17. 13 29 52 63 472 74 135 139 3.4 4.9 18. 11	07.	7	16	23	28	266	40	77	i	 	<u> </u>	<u> </u>	<u> </u>		1		2.3
10. 10 17 51 61 285 52 86 89 11. 7 12 43 51 168 40 62 74 So 12. 6 12 39 46 131 33 68 69 13. 12 19 63 76 269 69 103 106 14. 14 22 75 90 476 71 115 121 15. 11 21 39 46 359 62 112 119 16. 13 23 46 55 387 68 114 116 2.7 3.3 17. 13 29 52 63 472 74 135 139 3.4 4.9 18. 11 23 50 60 300 61 100 102 3.3 4.1 So 19. 10 22 47 56 337 57 103 103 2.6 4.2 20.	08.	8	16	42	50	279	45	76								3.2	3.8
11. 7 12 43 51 168 40 62 74 19 2.0 1.9 So 12. 6 12 39 46 131 33 68 69 69 103 106 2.7 3.9 14. 14 22 75 90 476 71 115 121 4.0 5.5 15. 11 21 39 46 359 62 112 119 3.5 4.3 16. 13 23 46 55 387 68 114 116 2.7 3.3 17. 13 29 52 63 472 74 135 139 3.4 4.9 18. 11 23 50 60 300 61 100 102 3.3 4.1 So 19. 10 22 47 56 337 57 103 103 2.6 4.2 20. 13 22 44 53 336 72 105 110	09.	7	11	30	36	123	38	56							2.2	1.4	1.4
So 12. 6 12 39 46 131 33 68 69 13. 12 19 63 76 269 69 103 106 14. 14 22 75 90 476 71 115 121 15. 11 21 39 46 359 62 112 119 16. 13 23 46 55 387 68 114 116 17. 13 29 52 63 472 74 135 139 18. 11 23 50 60 300 61 100 102 So 19. 10 22 47 56 337 57 103 103 20. 13 22 44 53 336 72 105 110 21. 16 29 67 81 496 87 122 131 22. 11 20 65 78 465 70 106 121 </td <td>10.</td> <td>10</td> <td>i .</td> <td>i</td> <td>61</td> <td>285</td> <td>i</td> <td>86</td> <td>i</td> <td>] -</td> <td> -</td> <td> -</td> <td> -</td> <td></td> <td>ī</td> <td></td> <td>3.6</td>	10.	10	i .	i	61	285	i	86	i] -	 -	 -	 -		ī		3.6
13. 12 19 63 76 269 69 103 106 2.7 3.9 14. 14 22 75 90 476 71 115 121 4.0 5.5 15. 11 21 39 46 359 62 112 119 3.5 4.3 16. 13 23 46 55 387 68 114 116 2.7 3.3 17. 13 29 52 63 472 74 135 139 3.4 4.9 18. 11 23 50 60 300 61 100 102 3.3 4.1 So 19. 10 22 47 56 337 57 103 103 2.6 4.2 20. 13 22 44 53 336 72 105 110 2.6 4.0 21. 16 29 67 81 496 87 122 131 3.2 4.7 22. </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.2</td>		-						-									2.2
14. 14 22 75 90 476 71 115 121 11 21 39 46 359 62 112 119 3.5 4.3 16. 13 23 46 55 387 68 114 116 2.7 3.3 17. 13 29 52 63 472 74 135 139 3.4 4.9 18. 11 23 50 60 300 61 100 102 3.3 4.1 So 19. 10 22 47 56 337 57 103 103 2.6 4.2 20. 13 22 44 53 336 72 105 110 2.6 4.0 21. 16 29 67 81 496 87 122 131 3.2 4.7 22. 11 20 65 78 465 70 106 121 3.1 4.0 23. 8 13 20 24		-															2.7
15. 11 21 39 46 359 62 112 119 3.5 4.3 16. 13 23 46 55 387 68 114 116 2.7 3.3 17. 13 29 52 63 472 74 135 139 3.4 4.9 18. 11 23 50 60 300 61 100 102 3.3 4.1 So 19. 10 22 47 56 337 57 103 103 2.6 4.2 20. 13 22 44 53 336 72 105 110 2.6 4.0 21. 16 29 67 81 496 87 122 131 3.2 4.7 22. 11 20 65 78 465 70 106 121 3.1 4.0 23. 8 13 20 24 240 43 72 82 2.3 2.2 24.																	4.0
16. 13 23 46 55 387 68 114 116 2.7 3.3 17. 13 29 52 63 472 74 135 139 3.4 4.9 18. 11 23 50 60 300 61 100 102 3.3 4.1 So 19. 10 22 47 56 337 57 103 103 2.6 4.2 20. 13 22 44 53 336 72 105 110 2.6 4.0 21. 16 29 67 81 496 87 122 131 3.2 4.7 22. 11 20 65 78 465 70 106 121 3.1 4.0 23. 8 13 20 24 240 43 72 82 2.3 2.2 24. 9 16 22 26 214 49 76 78 1.5 1.8 25.	1	i	i	i	i	i	i	i	•	 	 	 	 		1	•	6.5
17. 13 29 52 63 472 74 135 139 3.4 4.9 18. 11 23 50 60 300 61 100 102 3.3 4.1 So 19. 10 22 47 56 337 57 103 103 2.6 4.2 20. 13 22 44 53 336 72 105 110 2.6 4.0 21. 16 29 67 81 496 87 122 131 3.2 4.7 22. 11 20 65 78 465 70 106 121 3.1 4.0 23. 8 13 20 24 240 43 72 82 2.3 2.2 24. 9 16 22 26 214 49 76 78 1.5 1.8 25. 9 16 32 39 204 47 70 70 70 70 70 70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.5</td></td<>																	4.5
18. 11 23 50 60 300 61 100 102 3.3 4.1 So 19. 10 22 47 56 337 57 103 103 2.6 4.2 20. 13 22 44 53 336 72 105 110 2.6 4.0 21. 16 29 67 81 496 87 122 131 3.2 4.7 22. 11 20 65 78 465 70 106 121 3.1 4.0 23. 8 13 20 24 240 43 72 82 2.3 2.2 24. 9 16 22 26 214 49 76 78 1.5 1.8 25. 9 16 32 39 204 47 70 70 1.9 2.7 So 26. 8 15 38 46 186 46 76 77 77 2.1 2.6		_	_	_													3.5
So 19. 10 22 47 56 337 57 103 103 20. 13 22 44 53 336 72 105 110 21. 16 29 67 81 496 87 122 131 22. 11 20 65 78 465 70 106 121 23. 8 13 20 24 240 43 72 82 24. 9 16 22 26 214 49 76 78 25. 9 16 32 39 204 47 70 70 So 26. 8 15 38 46 186 46 76 77 27. 11 22 50 60 277 63 98 102		_	_	_													5.4
20. 13 22 44 53 336 72 105 110 2.6 4.0 21. 16 29 67 81 496 87 122 131 3.2 4.7 22. 11 20 65 78 465 70 106 121 3.1 4.0 23. 8 13 20 24 240 43 72 82 2.3 2.2 24. 9 16 22 26 214 49 76 78 1.5 1.8 25. 9 16 32 39 204 47 70 70 1.9 2.7 So 26. 8 15 38 46 186 46 76 77 2.1 2.7 27. 11 22 50 60 277 63 98 102 2.1 2.6	1		i	i	i		i	i							ī		4.1
21. 16 29 67 81 496 87 122 131 3.2 4.7 22. 11 20 65 78 465 70 106 121 3.1 4.0 23. 8 13 20 24 240 43 72 82 2.3 2.2 24. 9 16 22 26 214 49 76 78 1.5 1.8 25. 9 16 32 39 204 47 70 70 1.9 2.7 So 26. 8 15 38 46 186 46 76 77 2.1 2.7 27. 11 22 50 60 277 63 98 102 2.1 2.6																	4.6
22. 11 20 65 78 465 70 106 121 3.1 4.0 23. 8 13 20 24 240 43 72 82 2.3 2.2 24. 9 16 22 26 214 49 76 78 1.5 1.8 25. 9 16 32 39 204 47 70 70 1.9 2.7 So 26. 8 15 38 46 186 46 76 77 2.1 2.7 27. 11 22 50 60 277 63 98 102 2.1 2.6																	4.6
23. 8 13 20 24 240 43 72 82 24. 9 16 22 26 214 49 76 78 25. 9 16 32 39 204 47 70 70 So 26. 8 15 38 46 186 46 76 77 27. 11 22 50 60 277 63 98 102			_														5.0
24. 9 16 22 26 214 49 76 78 25. 9 16 32 39 204 47 70 70 So 26. 8 15 38 46 186 46 76 77 27. 11 22 50 60 277 63 98 102	i i	i	i -	i	i		i	i	i	l I		Ī			i		4.2
25. 9 16 32 39 204 47 70 70 1.9 2.7 So 26. 8 15 38 46 186 46 76 77 2.1 2.7 27. 11 22 50 60 277 63 98 102 2.1 2.6																	2.9
So 26. 8 15 38 46 186 46 76 77 27. 11 22 50 60 277 63 98 102 2.1 2.6		-															1.9 2.9
27. 11 22 50 60 277 63 98 102 2.1 2.6																	3.3
	1		i -	i	i -		i	i							1		2.8
1 78 1 10 1 77 1 77 1 51 1 705 1 56 1 87 1 109 1 1 1 1 1 1 1 1 1 1 71 1 72 1	27.	10	22	42	51	295	56	98 87	98						2.1	2.6	3.5
28. 10 22 42 31 293 36 87 98 29. 10 20 99 119 287 64 107 109																	3.3 4.0
29. 10 20 99 119 287 64 107 109	i		ī	i	i	ī	i	i	i						i		3.5
30. 10 19 102 122 333 61 97 107 31. 6 11 28 33 162 40 66 67			_														1.8


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31	31	31	31		31
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	29			496	139		6.5
Max.1-MW					135		5.5
Max.3-MW	24				121		5.3
IGL8-MW							
Max.8-MW							4.0
Max.TMW	16	102	122	199	87		2.7
97,5% Perz.	20						
MMW	9		54	103	52		1.5
Gl.JMW		27			34		

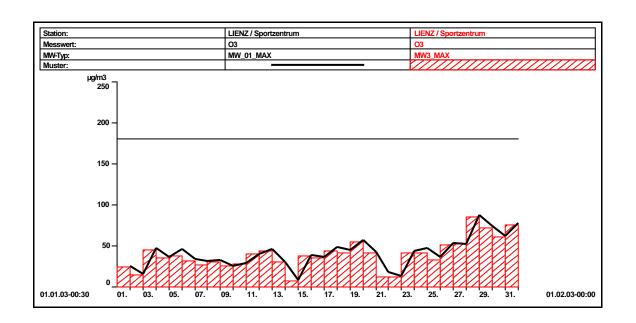

LIENZ / Amlacherkreuzung Messstelle:


Beu	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO	
ÖAW: Zi	Gelvorstellungen-Pflanzen,Ökosysteme					22		
ÖAW: S	O2-Kriterium-Erholungsgebiete	0						
ÖAW: R	tichtwerte Mensch, Vegetation (nur NO2)					1		
	. VO gegen forstschädliche auftverunreinigungen	0						
ÖAW: So	O2-Kriterium-allg.Siedlungsgebiete	0		0				
IG-L: G	0		0		0		0	
IG-L: Zi		8			1			
IG-L: W	0				0			
IG-L: Zi	lielwerte Ökosysteme, Vegetation	0				n.a.		
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anlage 2		0		0		0		0
VDI - RL 2310: NO-Grenzwert					0			
EU - RL 92/72/EWG: Ozoninformationsstufe								
OZONGESETZ: Vorwarnstufe								
OZONGESETZ: Warnstufe 1								
OZONGESETZ: W	Varnstufe 2							


Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des SO2-Grenzwertes gemäss ÖAW nur für das 97,5Perzentil der HMW des Monats n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

JÄNNER 2003 LIENZ / Sportzentrum Messstelle:

	SC)2	PM10	TSP	NO		NO2				03			СО		
			Staub	Staub												
	μg	/m³	μg/m³	$\mu \text{g/m}^{\text{3}}$	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									13	14	25	26	29			
02.									8	9	15	16	17			
03.									27	27	44	47	47			
04.									21	21	35	36	40			
So 05.									33	33	37	45	49			
06.									22	24	31	34	36			
07.			ļ						20	20	27	32	34			
08.									18	18	30	33	34			
09.									19	20	25	25	27			
10.			<u> </u>						20	21	28	29	30	ļ		
11.									36	36	40	40	42			
So 12.									39	39	43	46	46			
13.									18	19	30	31	32			
14.			 -						5	6	7	8	10			
15.									23	23	37	39	40			
16.									21	21	35	36	40			
17.									25	25	44	48	50			
18.									23	24	41	45	49			
So 19.									34	37	54	57	61			
20.									24	24	41	42	45			
21.									1	10	12	18	20			
22.			<u> </u>						7	7	12	13	15	ļ		
23.									32	32	42	44	47			
24.									32	33	41	47	47			
25.									23	25	32	36	39			
So 26.									38	41	51	53	54			
27.									35	38	52	51	56			
28.									71	76	85	88	92			
29.			İ						46	69	72	74	81			
30.									48	50	60	62	64			
31.									66	65	75	77	78			


	SO2	PM10 Staub	TSP Staub	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						92	
Max.1-MW						88	
Max.3-MW						85	
IGL8-MW						71	
Max.8-MW						76	
Max.TMW						49	
97,5% Perz.							
MMW						14	
Gl.JMW							

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 Staub	TSP Staub	NO	NO2	О3	CO
ÖAW: Zielvorstellungen-Pflanzen,Ökosysteme						3	
ÖAW: SO2-Kriterium-Erholungsgebiete							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2	.)					0	
2.FVO: 2. VO gegen forstschädliche Luftverunreinigungen							
ÖAW: SO2-Kriterium-allg.Siedlungsgebiete							
IG-L: Grenzwerte menschliche Gesundheit							
IG-L: Zielwerte menschliche Gesundheit						0	
IG-L: Warnwerte							
IG-L: Zielwerte Ökosysteme, Vegetation							
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anlage 2							
VDI - RL 2310: NO-Grenzwert							
EU - RL 92/72/EWG: Ozoninformationsstufe						0	
OZONGESETZ: Vorwarnstufe						0	
OZONGESETZ: Warnstufe 1						0	
OZONGESETZ: Warnstufe 2						0	

Ü1) Überschreitung des NO2-Grenzwertes gemäss ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

 $[\]ddot{\text{U2}}\text{)} \ddot{\text{U}} \text{berschreitung des SO2-Grenzwertes gemäss } \ddot{\text{O}} \text{AW nur für das 97,5Perzentil der HMW des Monats}$

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl.Nr. 199/84)

Grenzwerte für Schwefeldioxid (SO2):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit de Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO2)							
April - Oktober November - März							
97,5 Perzentil für den Halbstundenmittelwert 0,07 mg/m³ 0,15 mg/m³							
(HMW) in den Monaten							
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.							
Tagesmittelwert (TMW) 0,05 mg/m³ 0,10 mg/m³							

II. Warnwerte für Ozon laut Ozongesetz 1992:

Vorwarnung:	0,200 mg/m³ (3-Stundenmittelwert)
Warnstufe 1	0,300 mg/m³ (3-Stundenmittelwert)
Warnstufe 2	0,400 mg/m³ (3-Stundenmittelwert)

III. Vereinbarung gemäß Art. 15a B-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe und über Maßnahmen zur Verringerung der Belastung der Umwelt samt Anlagen:

Immissionswerte im Sinne des Artikels 3

(Konzentrationswerte in mg/m³, bezogen auf 20° C und 1013 mbar)

1.Schwefeldioxid in Verbindung mit Staub					
als Tagesmittelwert					
als Halbstundenmittelwert; drei Halbstundenmittelwerte pro Tag bis zu einer Konzentration von 0,5 mg SO ₂ /m³ gelten nicht als Überschreitung des Halbstundenmittelwertes					
als Tagesmittelwert; dieser Wert bezieht sich auf Staub mit einem Stock´schen Äquivalentdurchmesser kleiner 10µm.					
2. Kohlenmonoxid					
als gleitender Achtstundenmittelwert					
als Einstundenmittelwert					
3.Stickstoffdioxid					
0,2 mg NO ₂ /m ³ als Halbstundenmittelwert					

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien	Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO2)			August 1989: Luftqualitätskriterien Ozon (O3)				
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO2 in mg/m³			Wirkungsbezogene Immissionsgrenzkonzentrationen für O3 in mg/m³					
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode*
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebe	*) als Mittelwert der Siebenstundenmittelwerte in de			Zeit von 09.00 – 16.00 Uhr MEZ wä	ihrend de	r Vegetat	ionsperio	ode

Die hi	Die höchstzulässige Konzentration von Schwefeldioxid (SO2) und Staub in der freien Luft beträgt							
	in Erholur	ngsgebieten	in allgemeinen Siedlungsgebieten					
		Schwefeldioxid	in mg/m³ Luft					
	April - Oktober	November - März						
Tagesmittelwert	0,05 0,10		0,20					
Halbstundenmittelwert	0,07 0,15		0,20					
		Staub in	n mg/m³					
Tagesmittelwert	0,	.12	0,20					
	Die Überschreitung dieses	s Grenzwertes für Staub an	Die Überschreitung dieses Halbstundenmittelwertes					
	sieben nicht aufeinanderfolgenden Tagen im Jahr gilt		dreimal pro Tag bis höchstens 0,50 mg SO2/m³gilt					
	nicht als Luftb	eeinträchtigung.	nicht als Luftbeeinträchtigung.					

V. Immissionsschutzgesetz-Luft i.d.g.F.

a) Schutz der menschlichen Gesundheit (BGBI. I Nr. 62/2001)

Gre	nzwerte in μg/m³ (ausg	genommen CO: an	gegeben in mg/m³)		
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200*)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30**)
Schwebestaub				150	
PM_{10}				50***)	40
	War	nwerte in μg/m³			
Schwefeldioxid		500			
Stickstoffdioxid		400			
	Ziel	werte in μg/m³			
Stickstoffdioxid			_	80	-
PM_{10}				50	20
Ozon			110 ****)		

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m 3 gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m 3 ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m 3

b) Schutz der Ökosysteme und der Vegetation (BGBI. II Nr. 298/2001)

Grenzwerte in μg/m³						
Luftschadstoff	HMW	MW3	MW8	TMW	JMW	
Schwefeldioxid					$20^{1)}$	
Stickstoffoxide					30	
	Zielv	werte in μg/m³				
Schwefeldioxid				50		
Stickstoffdioxid				80		
1) für das Kalenderjahr und Winterhalbjahr	(1.Oktober bis 31.N	März)				

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

I. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)					
Tagesmittelwert 0,5 mg/m³					
Halbstundenmittelwert	1,0 mg/m³				

II. EU-Richtlinie / Ozoninformationsstufe: (EU-RL 92/72/EWG)

Grenzwert für Ozon (O3)		
Einstundenmittelwert (nichtgleitend):	0,180 mg/m³	

^{**)} Der Immissionsgrenzwert von 30 μg/m 3 ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m 3 bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m 3 verringert. Die Toleranzmarge von 10 μg/m 3 gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m 3 gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25."

^{****)} Der Mittelwert über acht Stunden ist gleitend; er wird viermal täglich anhand der acht Stundenwerte (0-8 Uhr, 8-16 Uhr, 16-24 Uhr, 12-20 Uhr) berechnet.

IG-L Überschreitungen:

PM10 Staub

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00 Tagesmittelwert> $50\mu g/m3$

MESSSTELLE	Datum	Wert[µg/m3]
INNSBRUCK / Andechsstrasse	01.01.2003	65
INNSBRUCK / Andechsstrasse	08.01.2003	67
INNSBRUCK / Andechsstrasse	09.01.2003	60
INNSBRUCK / Andechsstrasse	10.01.2003	95
INNSBRUCK / Andechsstrasse	11.01.2003	97
INNSBRUCK / Andechsstrasse	12.01.2003	93
INNSBRUCK / Andechsstrasse	13.01.2003	79
INNSBRUCK / Andechsstrasse	14.01.2003	109
INNSBRUCK / Andechsstrasse	16.01.2003 17.01.2003	102
INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse	18.01.2003	60 62
INNSBRUCK / Andechsstrasse	19.01.2003	67
INNSBRUCK / Andechsstrasse	20.01.2003	84
INNSBRUCK / Andechsstrasse	22.01.2003	58
Anzahl: 14	22.01.2005	30
INNSBRUCK / Fallmerayerstr.	08.01.2003	54
INNSBRUCK / Fallmerayerstr.	09.01.2003	62
INNSBRUCK / Fallmerayerstr.	10.01.2003	102
INNSBRUCK / Fallmerayerstr.	11.01.2003	96
INNSBRUCK / Fallmerayerstr.	12.01.2003	78
INNSBRUCK / Fallmerayerstr.	13.01.2003	60
INNSBRUCK / Fallmerayerstr.	14.01.2003	86
INNSBRUCK / Fallmerayerstr.	16.01.2003	83
INNSBRUCK / Fallmerayerstr.	19.01.2003	52
INNSBRUCK / Fallmerayerstr.	20.01.2003	57
Anzahl: 10		
HALL IN TIROL / Münzergasse	09.01.2003	56
HALL IN TIROL / Münzergasse	10.01.2003	87
HALL IN TIROL / Münzergasse	11.01.2003	79
HALL IN TIROL / Münzergasse	12.01.2003	58
HALL IN TIROL / Münzergasse	13.01.2003	68
HALL IN TIROL / Münzergasse	14.01.2003	92
HALL IN TIROL / Münzergasse	16.01.2003	103
HALL IN TIROL / Münzergasse	17.01.2003	58
HALL IN TIROL / Münzergasse	18.01.2003	56
HALL IN TIROL / Münzergasse	20.01.2003	79
HALL IN TIROL / Münzergasse Anzahl: 11	22.01.2003	55
GÄRBERBACH / A13	09.01.2003	55
GÄRBERBACH / A13	10.01.2003	94
GÄRBERBACH / A13	11.01.2003	82
GÄRBERBACH / A13	12.01.2003	53
GÄRBERBACH / A13	14.01.2003	55
Anzahl: 5		
IMST / Imsterau	09.01.2003	51
IMST / Imsterau	10.01.2003	75
IMST / Imsterau	11.01.2003	79
IMST / Imsterau	12.01.2003	53
IMST / Imsterau	15.01.2003	54
IMST / Imsterau	17.01.2003	61

IMST / Imsterau	20.01.2003	57
IMST / Imsterau	21.01.2003	66
Anzahl: 8		
BRIXLEGG / Innweg	06.01.2003	66
BRIXLEGG / Innweg BRIXLEGG / Innweg	07.01.2003	93
BRIXLEGG / Innweg	09.01.2003	101
BRIXLEGG / Innweg	10.01.2003	142
BRIXLEGG / Innweg	11.01.2003	82
BRIXLEGG / Innweg	12.01.2003	53
BRIXLEGG / Innweg	16.01.2003	55
BRIXLEGG / Innweg	21.01.2003	68
BRIXLEGG / Innweg	22.01.2003	56
Anzahl: 9		
TABLET / CL]]	01 01 0000	E 4
WÖRGL / Stelzhamerstrasse WÖRGL / Stelzhamerstrasse	01.01.2003	54
WÖRGL / Stelzhamerstrasse WÖRGL / Stelzhamerstrasse	09.01.2003 10.01.2003	58 97
WÖRGL / Stelzhamerstrasse	11.01.2003	76
WÖRGL / Stelzhamerstrasse	14.01.2003	65
WÖRGL / Stelzhamerstrasse	16.01.2003	57
WÖRGL / Stelzhamerstrasse	18.01.2003	55
WÖRGL / Stelzhamerstrasse	20.01.2003	60
WÖRGL / Stelzhamerstrasse	21.01.2003	64
WÖRGL / Stelzhamerstrasse	22.01.2003	64
WÖRGL / Stelzhamerstrasse	23.01.2003	54
Anzahl: 11		
	00 01 0000	E 4
KUFSTEIN / Franz-Josef-Platz KUFSTEIN / Franz-Josef-Platz	09.01.2003 10.01.2003	54 82
KUFSTEIN / Franz-Josef-Platz	11.01.2003	70
KUFSTEIN / Franz-Josef-Platz	14.01.2003	52
KUFSTEIN / Franz-Josef-Platz	22.01.2003	55
Anzahl: 5	22.01.2003	
VOMP / Raststätte A12	09.01.2003	58
VOMP / Raststätte A12	10.01.2003	88
VOMP / Raststätte A12	11.01.2003	81
VOMP / Raststätte A12	12.01.2003	58
VOMP / Raststätte A12	13.01.2003	57
VOMP / Raststätte A12 VOMP / Raststätte A12	14.01.2003 16.01.2003	77 66
VOMP / Raststätte A12 VOMP / Raststätte A12	20.01.2003	58
VOMP / Raststätte A12	22.01.2003	69
Anzahl: 9	22.01.2005	0,5
VOMP / An der Leiten	09.01.2003	57
VOMP / An der Leiten	10.01.2003	91
VOMP / An der Leiten	11.01.2003	88
VOMP / An der Leiten	12.01.2003	59
VOMP / An der Leiten VOMP / An der Leiten	13.01.2003	52
VOMP / An der Leiten	14.01.2003 16.01.2003	82 69
VOMP / An der Leiten	17.01.2003	54
VOMP / An der Leiten	20.01.2003	65
VOMP / An der Leiten	21.01.2003	54
VOMP / An der Leiten	22.01.2003	72
Anzahl: 11		
I IDNG / Amla da colonia	10 01 0000	F-1
LIENZ / Amlacherkreuzung	10.01.2003	51 63
LIENZ / Amlacherkreuzung	13.01.2003 14.01.2003	63 75
LIENZ / Amlacherkreuzung LIENZ / Amlacherkreuzung	17.01.2003	52
LIENZ / Amlacherkreuzung	21.01.2003	52 67
/		J ,

LIENZ /	Amlacherkreuzung	22.01.2003	65
LIENZ /	Amlacherkreuzung	29.01.2003	99
LIENZ /	Amlacherkreuzung	30.01.2003	102

Anzahl: 8

SCHWEBESTAUB

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00 Tagesmittelwert>150 μ g/m3

MESSSTELLE	Datum	Wert[µg/m3]	
BRIXLEGG / Innweg	10.01.2003	170	

Anzahl: 1

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00 Halbstundenmittelwert>200µg/m3

MESSSTELLE	Datum	Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00
Tagesmittelwert>80µg/m3

MESSSTELLE	Datum	Wert[µg/m3]
INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse Anzahl: 3	14.01.2003 16.01.2003 20.01.2003	100 87 93
<pre>INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. Anzahl: 2</pre>	14.01.2003 20.01.2003	90 86
HALL IN TIROL / Münzergasse HALL IN TIROL / Münzergasse HALL IN TIROL / Münzergasse HALL IN TIROL / Münzergasse Anzahl: 4	16.01.2003 18.01.2003	89 81
IMST / Imsterau Anzahl: 1	20.01.2003	85
WÖRGL / Stelzhamerstrasse WÖRGL / Stelzhamerstrasse Anzahl: 2	20.01.2003 21.01.2003	
VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12	13.01.2003 14.01.2003 15.01.2003 16.01.2003 17.01.2003 20.01.2003 21.01.2003 22.01.2003 23.01.2003 28.01.2003 29.01.2003 30.01.2003	120 85 99 101 99 115 115 115 90 88 100

Anzahl: 13

VOMP / An der Leiten 14.01.2003 89 VOMP / An der Leiten 20.01.2003 94 VOMP / An der Leiten 21.01.2003 95 VOMP / An der Leiten 22.01.2003 85

Anzahl: 4

LIENZ / Amlacherkreuzung 21.01.2003 87

Anzahl: 1

IG-L Warnwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00 Dreistundenmittelwert>400µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

SCHWEFELDIOXID

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.01.03-00:30 -01.02.03-00:00

Tagesmittelwert>50µg/m3

Datum Wert[µg/m3] MESSSTELLE

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00 Halbstundenmittelwert>200µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00 Dreistundenmittelwert>500µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00 Tagesmittelwert>10mg/m3

MESSSTELLE Datum Wert[ug/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.01.03-00:30 - 01.02.03-00:00 Achtstundenmittelwert>110µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!